Certain expansion Formulae Involving a Basic Analogue of Mittag-Leffler Function

Altaf Ahmad Bhat


In the present paper, the authors explain certain expansion of the basic analogue of the Mittag-Leffler function in relationship with the applications of q-Leibnitz rule for the Weyl type q-derivatives of a product of two functions. Some new expansion formulae have been derived as special cases of the results.

Full Text:



Sharma, S. K., & Jain, R. On Some Properties of Generalized q-Mittag Leffler Function. Mathematica Aeterna, Vol. 4, 2014, no. 6, 613 – 619.

Mittag-Leffler M.G. (1905): Sur La Representation Analytique d’une branche Uniforme d’une Function Mogene, Acta Math, Vol. 29, pp. 101-181.

Prabhakar T. R. (1971): A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. Vol. 19, pp.7-15.

Wiman, A. (1905): Uber den Fundamental Satz in Der Theorie Der Funcktionen, Ea(x). Acta Mathematica, Vol. 29, pp. 191-201.

Rainville E.D., Special Functions, Macmillan, New York. (1960).

Al-Salam, W. A. (1966). Some fractional q-integrals and q-derivatives. Proceedings of the Edinburgh Mathematical Society (Series 2), 15(02), 135-140.

Al-Salam, W. A. (1966). q-Analogues of Cauchy's Formulas. Proceedings of the American Mathematical Society, 17(3), 616-621.

Yadav, R. K., & Purohit, S. D. (2006). On fractional q-derivatives and transformations of the generalized basic hypergeometric functions. J. Indian Acad. Math, 28(2), 321-326.


  • There are currently no refbacks.

MAYFEB Journal of Mathematics 
Toronto, Ontario, Canada
ISSN 2371-6193