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Abstract :- In this research work, we suggest a new hybrid conjugate gradient
parameter for solving the system of nonlinear equation by the combination of the
Dai-Yuan and Hestenes-Stiefel conjugate gradient parameters. The new hybrid
conjugate gradient parameter of the proposed method gives it the advantage to solve
relatively large-scale problems (300,000- variables) with lower storage requirement
compared to some existing methods (conjugate gradient parameter). Under the
appropriate conditions, numerical results on benchmark test problems show that
the proposed method is practically effective (less number of iterations and computer
time).
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1. INTRODUCTION

We consider the nonlinear systems of equations
F(x) =0, )

where F :R" — R" isacontinuously differentiable mapping, the Line search methods are

one of the well-known techniques for solving equation (1); see [2, 11]. At the k™ iteration,
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the new point is introduced by
X =% Ty, 2)
where the search dk direction and &4 >0 is computed by exact or inexact line search

rules. More recently, waziri and sabi’u [11] proposed a derivative-free conjugate gradient
method and its global convergence for solving symmetric nonlinear equations based on
non-monotone line search methods; numerical results showed their method is promising.
Notwithstanding, Cheng and Li [4] extended the non-monotone line search method
proposed by Zhang and Hager [13] to the spectral residual method to solve large-scale
nonlinear systems of equations. Moreover, Zhang and Zhou [14] developed a spectral
gradient projection method by combining the spectral gradient method in [3] with the
projection method in [8]. Wang et al. [10] presented a projection method for nonlinear
equations with convex constraints. Also recently, Goglin and Maojun [6] derived a three-
terms Polak-Ribi € re-Polyak conjugate gradient algorithm for large-scale nonlinear
equations using projection approach. Numerical experiments showed that each over
mentioned method performs quite efficient, some of recent methods for solving system of
nonlinear equations included [18,19,20]. Motivated by the ideas of [8, 10, 1, 9,16, 17] and
the line search used in [11], this paper is to present hybrid conjugate gradient method for
solving system of nonlinear equations using prominents Dai-Yaun and Hestens-stiefel
conjugate gradient parameters.

Consequently, this article is organized as follows: Next section is the details of our new
method. Some numerical results will reported in Section 3. Finally the conclusion and

result discussion.

45



MAYFEB Journal of Mathematics
Vol 1 (2017) - Pages 44-55

2. DETAILS OF THE PROPOSED METHOD

This section gives the details of our proposed hybrid using the two well-known conjugate
gradient methods (i.e. Dai-Yaun and Hestens-stiefel). The classical conjugate gradient
direction is given by

div1 = —Fgi1 + Brdi 3)
Where [ is termed as conjugate gradient parameter. Recall that, Dai-Yaun conjugate
gradient parameter is defined by

DY _ FIZ+1FK+1
k T (4)
dpYi

And Hestens-stiefel conjugate gradient parameter is defined as

T
HS _ Fr+1Yk 5
o = 3)

Let i belong to [0,1]

Suppose that

Be = npe” (6)
© =0 H1-mBE” (7)

drr1r =Fiesr + 1B dyc (8)

dis1= - FrertMBE° + (1 —m)BR" 1dk )

Equating (11) and (12) we have

nB =B + (1 — PR’ (10)

After some algebra we get

LT 2

Substituting 1 in to equation (10) we have
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ok __ Bl?yﬁllc-ls +(1_ ﬁllc)y )ﬁDY (12)
k ZBI?Y_B’IC-IS ZB’?Y_BIIC-IS k

After some algebra of above equation, we get new formula denoted by ;" is defined by

2
ok 2(||Fk+1”2)
k Al vk lFk+1l2=Fl ykd v

However, we choose the steplength a;,, we proposed to use the well-known gradient line
search defined by

IF (xie + adi) |l < S || Ficll, (13)

— %k
for o¢p 1= -

Therefore, we defined our iterative scheme as:

Let 4, =X +dk, k=0,1,2, ..., then the hyperplane
H, ={X€R” |(x=2,)' F(Zk):O} (14)
strictly separates X, from the solution set of (1). Therefore, from this facts, Solodov and
Svaiter[8] advised to let the next iterate X,,; be the projection of X, onto this hyperplane

H, . Therefore, X, is now defined as

F(z,)" (x, —z
X =% — (z,) (X, - W)
IF(z) |l

F(z). (15)

Henrce our proposed direction dk is given by
d, =-F(x,) ,k=0 and d, =-F(x)+A d, k>1 (16)
Algorithm

Stepl: Given X,,8>0, and g > 0, then compute d, =—F(X,) andset k=0.
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Step 2: Test a stopping criterion. If yes, then stop; otherwise, continue with Step 3.

Step 3: Compute & by the line search (13).

_ F(Zk)T (Xk _Zk)
IF@OI?

Step 4: Compute X,,, = X, F(z,).

Step 5: Compute the search direction by (16).

Step 5: Consider k =k +1 and go to step 2.

3. NUMERICAL RESULTS

In this section, we compare the performance of our conjugate gradient method for solving
a a system of nonlinear equation with new proposed inexact PRP conjugate gradient
method for solving symmetric nonlinear equation [15]. The both codes were written using
Matlab8.0 R2012b and run on personal computer 2.10 GHz CPU processor and 4 GB Ram
memory with the following initial parameters as:

Algorithm: ;=1 and §, = 0.9

INPRP: we set w; = w, =107%, a;=0.01, r = 0.2,and = 1/(k +1)2

TABLE1: Numerical comparison between our algorithm and Inexact PRP method

Algorithm Inexact PRP
Problem X n | Itera i || Fll Itera | INPRP
tion tion | Time® | Fe ||
Time(s)
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0.5¢ | 100 |15 0.002951 9.4630e-05 40 0.012713 9.8002e-05
200 |16 0.009085 5.4211e-05 42 0.022958 8.4489¢-05
300 |16 0.005871 6.6395¢-05 43 0.027492 8.0793e-05
400 |16 0.027642 7.6666¢-05 43 0.029832 9.3292e-05
500 |16 0.014245 8.1438e-05 44 0.032500 8.5715e-05
600 |16 0.017171 8.9211e-05 44 0.032020 9.3897e-05

0.5¢ 100 |18 0.009311 3.6023e-05 50 0.017604 8.5435e-05
150 |18 0.030552 4.4107e-05 51 0.087215 8.1697e-05
350 |18 0.012761 6.7375e-05 52 0.049630 9.7437e-05
400 |18 0.008376 7.2026e-05 53 0.045349 8.1329¢-05
600 |18 0.010549 8.8214e-05 53 0.067852 9.9607e-05
800 |19 0.030211 8.8875e-05 54 0.060670 8.9802¢e-05

0.5¢ 200 |18 0.014740 6.7182e-05 46 0.026009 9.878e-05
50 17 0.018771 6.0389¢-05 44 0.025296 8.0968e-05
5000 | 20 0.243431 7.5107e-05 53 0.327190 8.7308e-05
2500 | 21 0.966711 6.5632¢-05 56 1.071846 9.2922e-05
0 19 0.038222 5.3343e-05 49 0.051142 9.3974e-05
800 |19 0.016911 7.3043e-05 51 0.094136 7.8444e-05
1500 | 19 0.058713 5.9640e-05 50 0.083763 8.2033e-05
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0.5¢ 300 |18 0.020292 8.2211e-05 47 0.059375 9.4399¢-05
1500 | 19 0.042501 7.3043e-05 51 0.106967 7.8444e-05
90 19 0.011787 4.9898e-05 49 0.042068 8.7904e-05
850 |17 0.005093 8.1020e-05 45 0.031743 8.4816e-05
120 |19 0.222768 5.4985¢e-05 49 0.025648 9.6866¢-05
50 17 0.005209 9.3554e-05 45 0.010681 9.7937e-05
17 0.005158 6.0389¢-05 44 0.014047 8.0968e-05
0.1e [500 |13 0.013564 5.0425e-05 80 0.120601 8.3848e-05
300 |12 0.012389 8.1186e-05 78 0.097641 9.9133e-05
5500 | 14 0.073117 6.5895¢-05 90 0.816910 9.1120e-05
50
12 0.007587 4.0471e-05 70 0.053775 8.0932e-05
0.3e [ 600 |10 0.011121 1.7721e-05 26 0.361364 8.2130e-05
300 |10 0.004294 2.1211e-05 24 0.025821 7.9039¢-05
1000 | 10 0.008536 5.3013e-05 27 0.034039 8.9196e-05
500 |10 0.011177 1.0963¢-05 25 0.014294 9.2550e-05
1200 | 10 0.016973 7.2726e-05 27 0.031654 9.9550e-05
0.4e |700 |3 0.006582 1.7430e-05 18 0.022914 2.1365e-05
200 |3 0.003778 5.8411e-05 17 0.019357 9.3168e-05
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900 |3 0.005949 1.97644-05 18 0.030703 2.4225e-05
80 3 0.003450 3.6942¢e-05 17 0.010260 5.8925e-05
1000 |3 0.005858 2.0833e-05 18 0.017495 2.5535e-05
12 0.15¢ | 800 |19 0.377682 6.9886¢-05 54 0.0105131 9.5440e-05
80 17 0.024725 7.1025e-05 50 0.074375 8.1633e-05
500 |19 0.031424 5.5250e-05 53 0.074794 9.6762¢-05
1500 | 19 0.06682 7.9463e-05 56 0.210276 9.5695e-05
14 0.6e | 1000 |3 0.007782 7.7506e-07 20 0.041203 9.0632¢-05
1500 |3 0.040275 5.8569¢-05 21 0.398142 9.4995e-07
2500 |3 0.017596 1.2264e-06 21 0.502070 7.5612e-05
10 3 0.002599 7.7563e-08 17 0.032009 9.3873e-05
100 |3 0.002446 2.4528e-07 19 0.013404 6.7025e-05
15 0.9¢ | 1000 |21 0.148988 2.0303e-05 49 0.201235 9.4052¢-05
400 |20 0.063128 8.0306¢-05 48 0.078092 9.7229¢-05
900 |21 0.030693 1.9261e-05 49 0.196178 8.9226¢-05
1800 | 21 0.167460 2.7239e-05 50 0.325544 9.3467¢-05
4500 | 21 0.462552 4.3069¢-05 52 0.674398 8.1083e-05
16 0.4e | 1100 |8 0.035858 2.6993e-07 34 0.083381 9.3043e-05
500 |8 0.025612 1.8199¢-05 34 0.036574 6.2730e-05
50 6 0.015257 6.1429¢-05 32 0.027877 6.7225e-05
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1500 | 8 0.073276 3.1522e-07 35 0.117161 6.1686¢-05
8100 | 8 0.333290 7.3251e-07 36 0.518012 8.1536e-05
Problem 1:
F(x;) = e*i—1, i=12,..,n.
Problem2
F(x) =x?—4 i=1.2,..,n
Problem3:
F(x;) = xjxj01 — 1, i=12,..,n—1.
F(xp) = xp2y — 1,
Problem4:
F(x;) = x* —1, i=12,..,n
Problem5:
F(x) =x?+x;—2, i=12,..n
Problem6:
F(x;) =cos(x;_y)+x;—1, i=1,2,..,n.
Problems:
F(x)) =x*—cos(x)—1, i=12,..,n
Problem12:

F(x;) = x; — 3x;(sin(x;)/3) — 066 +2 i=1,2,..,n.
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Problem14:
F(x;) = eXi —1— cos(1—x;) i=1.2,..,n.
Problem15:
F(x;) =x?+x; —3log(xi43) —9, i=12,..,n
Problem16:

F(x)=x>,02-2 i=12,..,n

4. CONCLUSION

This paper developed a hybrid method for solving system of algebraic nonlinear
equations. The proposed scheme was entirely derivative-free and matrix-free iterative
approach which possesed less number of iteration and CPU time in second. However, our
algorithm doesn’t required computation and storing of n X n Jacobian matrix. Numerical
comparison with original inexact PRP method for solving symmetric nonlinear equations
shows or scheme is promising. Furthermore, the numerical experiment on benchmark test
problems shows that the proposed method large-scale system of nonlinear equations with

minimun CPU time and number of iterations compared to the existing algorithms (IPRP).
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