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Abstract- We present a class of fourth and sixth order A-stable block extended trapezoidal rule of first kind (ETRs) 
and extended trapezoidal rule of second kind (ETR2s) methods which are found to be adequate for the numerical 
integration of stiff ordinary differential equations. The single continuous formulation of this methods are evaluated 
at some grid and interior points yielding the multi-discrete schemes which are implemented in block form thereby 
generating simultaneously approximate solutions ܡ૚		, ,૛ܡ … ,  at once without recourse to predictors. By this ܓܡ
approach, the need for starters is eliminated. The stability properties of the block ETRs/ETR2s methods discussed 
and were shown to preserve the A-stability property of the trapezoidal rule, their absolute stability regions also 
presented. The newly derived block methods were implemented on five stiff systems of ordinary differential 

equations occurring in real life to show efficiency and accuracy. 
 

Keywords: Multi-Step Collocation Method, Extended Trapezoidal Rule, Interpolation and Collocation, ETRs/ 

ETR2s.  

 

I. INTRODUCTION 

  
A great many physical occurrences give rise to problems that often result in ODEs. When we solve a differential 

equation, we are in effect solving the physical problems it represents. Traditionally, solution to differential equations 

was derived using analytical methods. These solutions are often useful as they provide excellent insight into the 

behavior of some systems. However, certain differential equations are very difficult to solve by any means other than 

an approximate solution by the application of numerical methods [3]. The common numerical methods used to solve 

ODEs are the one-step (multistage) method like the Euler and trapezoidal methods and multistep methods [18]. Most 

physical problems modeled in kinetics, chemical reactions, process control and electrical circuit theory often result to 

stiff ODEs where processes with wide varying time constrains are usually encountered. It should be recalled that stiff 

initial value problem were first encountered in the study of motion of spring of varying stiffness, from which the 

problem derive its name [8]. Extended Trapezoidal Rule of First kind and that of Second Kind were introduced by [4]. 

According to the authors, the method(s) belong to the group of symmetric Schemes and are categorized into the family 

of Boundary Value Methods (BVMs). Extended trapezoidal rules have been extensively studied by the following 

scholars [10, 11 and 19]. 

A. Symmetric schemes 

        We group as symmetric schemes BVMs having the following general properties: 

1. They have an odd number of steps, ,12  vk ,1v and must be used with  1, vv  –boundary conditions 

(that is, they require 1v initial and 1v final additional methods). 

2. The corresponding polynomials )(z have skew-symmetric coefficients. That is 
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 )()( 1 zzz k  
; 

3. The corresponding polynomials )(z have symmetric coefficients. That is 

 )()( 1 zzz k  
 

4. 
 1,vvD  

    Note: Multi-step collocation approach which we have adopted in this paper allows for flexibility of obtaining all our 

discrete schemes from the same continuous formulation of the main method, thereby eliminating the need for starters 

and its implementation to ODEs also eliminates any boundary conditions (that is, the 1v initial and 1v final 

additional methods stated above).  However, it is easy to show that our methods are symmetric. 

   Remark: Show that the sixth order extended trapezoidal rule of first kind is symmetric. 

Proof 

From (21), we have that 

,12  ,13  93,802,802,93,11 43210   and 115   

i. Consider the LHS of (2) in subsection A , we obtained 

      
231)(   zzz  

Then, 
3223515 )()( zzzzzzz    

Now, RHS of (2), yields 

  3223)( zzzzz    

ii. From the LHS of (3), we have that 

       11938028029311)( 123451   zzzzzz  

          11938028029311)( 12345515   zzzzzzzz   

                           
5432 11938028029311 zzzzz   

From RHS of (3), yields 

   11938028029311)( 2345  zzzzzz . In both cases, RHS=LHS. QED 

In recent years, the problem of deriving more advanced and efficient numerical methods for stiff problems has 

received a great deal of attention and as a result, a wide variety of approaches have been proposed. A potentially good 

numerical method for the solution of stiff system of ODEs of the form  

    







bxaay

xyxfxy

,)(

))(,()(


                                                                                                (1) 
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must have good accuracy and some reasonably wide region of absolute stability [6, 14]. One of the first and most 

important stability requirements particularly for linear multistep method is A-stability which was proposed in [7, 14]. 

However, the requirement of A-stability put some limitations on the choice of suitable LMMs. Dahlquist proved that 

the order of an A-stable LMM must be greater or equal to two (2) and that an A-stable multistep method must be 

implicit. 

The general k-step method for (1) given by [13] is written in the form: 

,
00






 
k

j
jnj

k

j
jnj fhy  0k                                                                       (2) 

where, 

j and j are coefficients of the method to be uniquely determined, h  a constant step size and k  the step number.  

We propose in this study a basis function of the form: 





m

j

j
kj xxxy

0

)()(                                                                                          (3) 

Equation (3) can now be used to generate the high order A-stable block ETR2s methods. 

B. Convergence of Linear Multi-Step Methods 

Definition 1: A linear multistep method defined by a formula of the form (2) is said to be convergent in a region 

],[ 10 tt if  

),()(lim
0

txtx h
h




],[ 10 ttt                                                                                           (4) 

provided only that  

,)( 0
0

lim xjhtx h
h




kj 0                                                                                  (5) 

Here )(txh is the numerical solution computed using a step size of h and )(tx is the theoretical solution. This 

definition is natural enough. The following definitions are not so natural, but nevertheless extremely useful.  

Definition 2: Consider a linear multistep method corresponding to a relation of the form (2). Set  
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2

2
1
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We shall say that the method (2) is stable if the roots of the polynomial )(P lie in disk 1 and if each root such 

that is 1 simple. The method (2) is said to be consistent if 0)1( P and )1()1( QP    

Theorem 1: Consider a linear multistep method corresponding to a relation of the form (2). Then this method is 
convergent if and only if it is both consistent and zero stable.  

C: The Order of Linear Multi-Step Methods.  

The order of a linear multi-step method is an integer that corresponds to the number of terms in the Taylor expansion of 

the solution of the solution that a multi-step method stimulates. Let us represent the linear multi-step method (2) as a 

linear functional 

 



k

j
jj jhfhjhxxL

0

)()(][ 
 

                            



k

j
jj jhxhjhx

0

)()(   

Here we let nk  to simplify our notational and assume that the first value of equation (2) begins 0t at rather, than

 hknt  . Now  

     
 

)0(
!

)( )(
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and so we can write   

    








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
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!
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!

][ 
                

(6)

 

Collecting terms proportional to )0(x and ),...0(x  (or equivalently by their degree in h ) we have   

...)0()0()0(][ 2
210  xhuxhuxuxL

 
where 

        



k

i
iu

0
0   

         )(
0

1 i

k

i
iiu   

  
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(7) 

 
 

Theorem 2: The following three properties of the LMM (2) are equivalent: 

   1. 0...210  muuuu  

   2. 0][ PL for each polynomial P of degree m  

   3. ][xL  is )(0 1mh  for all 1 mCx  

Proof 

 (1)   (2): 
       If (1) is true then  

                   ...)0()0(0...00][ )2(2
2

)1(1
1  





mm

m
mm

m xhuxhuxL  

             But if  P is a polynomial of degree m  then .0)()1(  xP m
 therefore, for such a polynomial  

                               ...)0()0(0...00][ )2(2
2

)1(1
1  





mm

m
mm

m PhuPhuxL    

                                         0  

 (2)   (3): 

             If ,1 mCx  then by Taylor’s Theorem we can write    

                              )()()( tRtPtx   

where )(tP is a polynomial of degree m and 

                       1
)1(

)!1(

)(
)( 




 m

m
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x
tR


 

Notice that 

                             0
0


t

j

j

dt

Rd
 

Hence 

                                  ][][][ RLPLxL   

                                 ...)0()0(0][ )2(2
2

)1(1
1  





mm

m
mm

m xhuxhuxL  
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                                 )(0][ 1 mhxL  

 (3)   (1) 

If (3) is true, then we must have .0...210  muuuu  Henc, (3) implies (1). 

Definition 3: The order of a LMM is the unique natural number m such that  

                                 1210 ...0  mm uuuuu
 

 

II. METHODOLOGY 

 
Case 1:  Derivation of fourth order Extended Trapezoidal Rule of first kind  
 
Equation (3) can be reformulated as a polynomial function: 


















pkk

m

j

j
kj

xxx

xyxxxY ),()()(
0


                                                      (8)  

Over each of the sub-interval ),( pkk xx  of ),( ba where, m is appropriately chosen. This shall be used as basis 

function to derive the LMM in continuous form. 

The technique which is being employed is using the trial or basis function 

pkk

n

j

j
kj xxxxyxxxY 





  ),()()(
1

0


 
                                       (9)  

This satisfies the unperturbed ODE: 







 

kk

pkk

YxY

xxxxyxfxY

)(

)),(,()(
                                                                    (10) 

Collocating equation (10) at )1( n points njx jk ,...,1,0,  and interpolating the trial polynomial   (9) at 

1,...,2,1,  njx jk to give the require )2( n equations for the unique determination of j . 

Doing this, we write 















1,...,2,1,)(

,...,1,0,)(

njYxY

njfxf

jkjk

jkjk
                                                                         (11) 
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 To derive the fourth order block ETR2s method, we set, 3n  in the equation (9), so that  

4
8

2
210 )(...)()()( kkk xxxxxxxY  

 
                         (12) 

From equation (11), we have 



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


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
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
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                                                                                         (13) 

Using equation (12) in (13), we obtain the following equations 

                                          1
4

4
3

3
2

2101 )()()()()(   kk YxY   

                                         kk fxY  1)(   

                                        1
3

4
2

3211 )(4)(3)(2)(   kk fxY 
 

                                        2
3

4
2

3212 )(32)(12)(4)(   kk fxY 
 

                                       3
3

4
2

3213 )(108)(27)(6)(   kk fxY   

where, 

kxx   

Representing this in matrix form yield 
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Solving for 1,...,2,1,  nii and substituting in equation (12) we obtained 



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(14) 

On evaluation of (14) at some end points and interior points, we obtained the following equations whose coefficients are 

presented in table 1 and 2. 

 nnnnnn ffff
h

yy   12312 1313
24  

 
 nnnnnn ffff

h
yy 9195

24 1231    

           
 12313 4

3   nnnnn fff
h

yy                                                     (15) 

 

Case 2:  Derivation of fourth order Extended Trapezoidal Rule of Second kind 

Collocating equation (10) at )1( n points 1,...,2,1,  njx jk and interpolating the trial polynomial (9) at

1,...,1,0,  njx jk to give the require )2( n equations for the unique determination of j . 

Doing this, we write 















1,..,1,0,)(

1,...,2,1,)(

njYxY
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jkjk

jkjk
                                                                       (16) 

 To derive the fourth order block ETR2s method, we set, 3n  in the equation (9), so that  

4
8

2
210 )(...)()()( kkk xxxxxxxY  

 
                        (17) 

From equation (11), we have 
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Using equation (12) in (13), we obtain the following equations 

                                       kk YxY  0)( 
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where, 

kxx   

Representing this in matrix form yield 
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Solving for 1,...,2,1,  nii and substituting in equation (12) we obtained 
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(19) 

On evaluation of (19) at some end and interior points, we obtained the following equations whose coefficients are 

presented in table 1 and 2. 

   12123 2
99

12

1
  nnnnnn ff

h
yyyy  

   12312 1714
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32427
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1
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h
yyy  

   nnnnn fff
h

yy   122 4
62

1
                                                                     (20) 

Following a similar procedure as in case 1 and 2, we obtained ETRs and ETR2s of up to order 6. 

       Case 3:  Sixth order Extended Trapezoidal Rule of first kind    

 nnnnnnnn ffffff
h

yy 11938028029311
1440 1234523  
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h
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            (21) 

and  

 

       Case 4:  Sixth order Extended Trapezoidal Rule of Second kind 
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(22) 

 

III. ANALYSIS OF BASIC PROPERTIES OF THE METHODS 

 
Consider equation (2), writing this in block form we have 

)()()1()0(
mnnm YhbFyhdfyAYA 

                                                                    
(23)  

where,  

 Tim yY 1 ,  Tin yy 2 ,  Tim fYF 1)(  ,  Tin fyf 2)(  , 2)1(  nnni  

The linear operator  hxyL );(  associated with the block (15) can be defined as: 

  )()();( )1()0(
mnnm YhbFyhdfyAYAhxyL 

                                             
(24)  

where, )( nxy  is any sufficiently differentiable vector valued function. By Taylor series expansion, we have that 

   1
2)1()1(

1 ,),(0)();( 


  nn
p

n
pp

p xxxhxyhchxyL
                                  

(25) 

 here, c is regarded as the error constants, p the order of (2). 

A.  Order of the fourth order block ETRs  

Applying (23) on (15), we obtained  
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Expanding (26) in Taylor Series gives 
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(27) 

Following (25) and definition (3), we tabulate in tables 4 and 5 the order and error constants of the method.   

B.   Order of the fourth order block ETR2s  

Similarly, applying (23) on (20) yields;  
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Expanding (28) in Taylor Series yields 
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(29) 

From (29), we obtained the order and error constants which is shown in tables 4 and 5. 

C.  Zero-Stability of the methods 

Definition 4: A block method is said to be zero stable if as ,0h  the roots krj )2(1  of the first characteristics 

polynomials )( is given by 

 0det)(
0

)( 
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
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 
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
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i

ikiA                                                                               (30) 

satisfies 1j , the multiplicity must not exceed two [12].
 
 

Following [2], we obtain the first characteristics polynomial of the 4th Order ETRs as  
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This implies that 11  , .032    Hence by definition (2) and (4), the 4th Order block ETRs (15) is zero-

stable. Following theorem (1) and by [5, 8, 9 and 13], the block method is convergence since it is consistent and zero 

stable. 

D. Absolute Stability Regions of the Block ETRs and ETR2s Methods 

Definition 5. A Numerical method is said to be A -stable, if its region of absolute stability contains the whole of the left 

hand complex plane. 
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The absolute stability regions of the ETRs and ETR2s methods are plotted (Fig. 1). Both methods were shown to be 

A -stable and therefore suitable for the solution stiff system of ordinary differential equations.         

                      Figure 1.  Regions of Absolute Stability of the 4th Order block ETRs and ETR2s method.  

 

IV. NUMERICAL EXPERIMENT 

In order to assess the performance of our block methods, we consider five real life systems of first order ordinary 

differential equations. 

 Problem 1:  A numerical example solved by [14].  

                                   
xeyyy  )1(211                                                     

                                   
xeyyy  )1(212                           

with initial value 
Ty )1,1()0(  . In order to make this system homogeneous, we introduce an additional variable

,13 y .0)0(3 y   the eigenvalues of the Jacobian associated with the resulting system are , i .0   this 

problem has theoretical solution as
xexyxy  )()( 21 . Results are obtained when ,1  30 and the value of 

h chosen was 09.0 . 
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TABLE 1. Maximum Absolute Errors of Problem 4.1  

݄ ൌ 0.09  
     x 

     
  N 2,1, iyi  

SDMM [14] 
    K=5 

    4th Order 
      ETRs 

  4th Order                  
ETR2s 

   6th Order 
     ETRs  

  6th Order 
   ETR2s    

 
 

    4.5 
 

 
 
50 

 

1y  

 
0.3e-11 

 
5.2e-10 

 
5.1e-10 

 
1.6e-12 

 
1.6e-12 

 

2y  

 
0.3e-11 

 
2.2e-10 

 
2.2e-10 

 
2.2e-14 

 
2.1e-14 

 
 

     9 

 
 
100 

 

1y  

 
0.3e-14 

 
5.8e-12 

 
5.7e-12 

 
1.7e-14 

 
1.6e-14 

 

2y  

 
0.3e-14 

 
2.5e-12 

 
2.5e-12 

 
2.4e-16 

 
2.3e-16 

 
 

    13.5 

 
 
150 

 

1y  

 
0.7e-16 

 
6.4e-14 

 
6.4e-14 

 
2.0e-16 

 
2.0e-16 

 

2y  

 
0.6e-16 

 
2.3e-14 

 
2.3e-14 

 
2.7e-18 

 
2.8e-18 
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1y  

 
0.1e-19 

 
7.1e-16 

 
7.1e-16 

 
2.2e-18 

 
2.2e-18 

 

2y  

 
0.2e-19 

 
3.1e-16 

 
3.0e-16 

 
2.9e-20 

 
2.8e-20 

 

Problem 2:  Considering the discharge valve on a 200 -gallon tank that is full of water opened at time 0t and 3

gallons per second flow out. At the same time 2 gallons per second of1percent chlorine mixture begin to enter the tank. 

Assume that the liquid is being stirred so that the concentration of chlorine is consistent throughout the tank. The task is 

to determine the concentration of chlorine when the tank is half full. It takes100seconds for this moment to occur, since 

we lose a gallon per second. If )(ty  is the amount of chlorine in the tank at time t , then the rate chlorine is entering is

100

2
 gal/sec and it is leaving at the rate 





 t

y

200
3  gal/sec.  

Thus, the resulting IVP is  

,
200

3
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
 0)0( y , ,10  t 1.0h  

whose theoretical solution is  
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t
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[See (Areo and Adeniyi, 2014)] 
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TABLE 2.  Maximum of Absolute Errors for Problem 4.2 

 Areo & Adeniyi [1]    ݔ
      6th Order 

    4th Order 
      ETRs  

     6th Order 
       ETRs 

0.1             0 17101       
17104   

0.2             0 0           0 
0.3 

     
111040.2   

17106      
17102   

0.4 
     

111040.2   
17103       

17101   
0.5 

     
111040.2   

17104       
17101   

0.6 
     

11103   0     
16101   

0.7 
     

11103   0     
16101   

0.8 
     

11103   0     
16102   

0.9 
     

11103   
16107       

16101   
1.0 

      
11103   

16107   
          0 

 

Problem 3:  As our third numerical example, we consider the system of ODE 
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                                    The theoretical solution is given by  
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TABLE 3.  Maximum of Absolute Errors for Problem 4.3 
  Okunuga & Ohigie [17]            4th Order ETRs             4th Order ETR2s ݔ

0.1 3.71e-008     2.978592172908634e-008     2.978592172908634e-008 
0.2 2.34 e-008     5.666648972280086e-008     5.666648972280086e-008 
0.3 9.19 e-007     8.085424862969148e-008     8.085424818560227e-008 
0.4 8.87 e-007     1.025479199334711e-007     1.025479190452927e-007 
0.5 7.49 e-007     1.219332483870517e-007     1.219332470547840e-007 
0.6 6.04 e-007     1.391837916031591e-007     1.391837902708915e-007 
0.7 4.93 e-007     1.544616710091873e-007     1.544616696769197e-007 
0.8 4.12 e-007     1.679182695113468e-007     1.679182686231684e-007 
0.9 3.73 e-007     1.796948976284796e-007     1.796948971843904e-007 
1.0 2.19 e-007     1.899234152169527e-007     1.899234147728635e-007 
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Problem 4:  To test the efficiency of the proposed algorithm we used the following stiff initial value problem 

arising from the biochemistry see [16]. 

)),()()()()((
1)( 2

12121
1 tqytytytyty
dt

tdy
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),()()()(2
)(

2123
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dt
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  

 

)),()((
1)(

31
3 tyty

rdt

tdy
 dybyay  )0(,)0(,)0( 321  

 
Here qm,, and r are some parameters, ba, and d are the initial values. For some values of parameters this 

model has a periodic solution very sensitive for the parameter values. Let the parameter values be as follows: 

;1.0: ;01.0:q   ;5.0:m   1:r and the initial conditions are ,0a 5.0b  and 8.0d . The test 

problem was solved on the interval [0, 30]. Problem 4 was extracted from the work of [15]. 

                                     
Figure 2. Solution curve for Problem 4.4 using 4th Order ETRs  

   
Figure 3. Solution curve for Problem 4.4 using 4th Order ETR2s 
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Problem 5:  
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This fifth example has been reported by [20] and is a real life problem of mathematical models for predicting the 

population dynamics of competing species [3]. 

     
Figure 4. Solution curve for Problem 4.5 using 6th Order ETRs 

 
Figure 5. Solution curve for Problem 4.5 using 6th Order ETR2s 
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Table 4. Coefficients of ETRS/ETR2S 

Table 5. Error Constants of ETRS/ ETR2S  

ETRs 

Eqn. 
1pc  
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൰
்
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൰
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V. CONCLUSION 

          We have derived a class of fourth and sixth order Extended Trapezoidal Rule of First (ETRs) and Second kind 

(ETR2s). Our newly derived methods in block form are shown to have extensive regions of stability and in particular are 

A-stable up to order 6 and so very suitable for stiff system of ordinary differential equations. The continuous 

formulation for each step number ݇ is evaluated at the end point of the interval to recover the discrete schemes of [4] as 

special case. To this end, the idea of additional conditions is discarded. Furthermore, we do not need any pair in our 

implementation. Our block methods preserve the A-stability property of the trapezoidal rule (refer to figure 1), they are 

also less expensive in terms of the number of functions evaluation per step. Consequently, our methods were shown to 

compete favorably with the well known MATLAB Ode solver (Ode 23s). We evaluated their performance on a set of 

five challenging systems of first order stiff ordinary differential equations and compared their performance with some 

existing theoretical solutions. The numerical results are quite satisfactory given a better accuracy. 
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