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Abstract-Handling multicollinearity problem in regression analysis is very important because the existence of 

multicollinearity among the predictor variables inflates the variances, and confidence interval of the parameter estimates 

which may lead to lack of statistical significance of individual independent variables, even though the overall model may 

have significance difference. It is also mislead p-values of the parameter estimate. In this paper, several regression 

techniques were used for prediction in the presence of multicollinearity which include: Ridge Regression (RR), Partial 

Least Squares Regression (PLSR) and Principal Component Regression (PCR). Therefore, we investigated the 

performance of these methods with the simulated data that follows lognormal and exponential distributions. Hence, Mean 

square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage 

Error (MAPE) were obtained. And the result shows that PLSR and RR methods are generally effective in handling 

multicollinearity problems at both lognormal and exponential distributions.  

Keywords: Multicollinearity, ridge regression, partial least square regression, principal component regression.   

I. INTRODUCTION 

In several linear regression and prediction problems, the independent variables may be many and highly 

collinear. This process is called multicollinearity and it is known that in this case the ordinary least squares (OLS) 

estimator for the regression coefficients or predictor based on these estimates may give very poor results [1]. 

The problem of multicollinearity in regression analysis can have effects on least squares estimated 

regression coefficients, computational accuracy, estimated standard deviation of least squares estimated regression 

coefficients, t-test, extra sum of squares, fitted values and predictions, and coefficients of partial determination. 

These problems can be remedied using some method of estimation or some modifications of the method of least 

squares for estimating the regression coefficients. Thus, the problem of multicollinearity can occur in both simple 

linear regression and multiple linear regressions [2]. According to [3], there are various procedures for dealing with 
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multicollinearity, some of these include Principal Component Regression (PCR), Partial Least Square Regression 

(PLSR), Ridge Regression (RR), e.t.c. Three regularized regression methods were compared by Root Mean Square 

Error and Root Mean Square Error Cross Validation on real data. The data consists of the Gross Domestic Product 

Per Capita (GDPPC) in Turkey. Ordinary Least Squares regression (OLS) and Ridge Regression (RR) were found to 

be best because the value of RMSE is minimum while partial least squares regression (PLSR) is best because 

RMSECV is minimum. Finally, they concluded in their study that Partial Least Squares Regression (PLSR) was the 

superior model in terms of the prediction ability as compared to the other regularized models [4]. Also, prediction 

methods of the RR, the PCR and the PLSR using Monte Carlo simulation study were compared by [3], the authors 

used predictors 2,4,6, and 50 with sample size 20,30, 40, 60, 80 and 100. Thus, they concluded that the RR is found 

to be the best for low number of regression (when sample size lie between 20 to 100), PCR is the best when number 

of observations are greater than number of regressors in the model and PLSR perform better results as compared to 

the other two prediction methods when have a number of regressors. 

The [5] presented two techniques: PCA and PLSR for dimension reduction purpose when regressors are 

highly correlated. The PCA technique is used without the consideration of the correlation while the PLSR technique 

is applied based on the correlation using simulated data. They concluded that PLSR technique is more effective to 

the PCA technique for dimension reduction purpose. However, [6] compared the PLSR, RR and PCR as an 

alternative procedure for handling multicollinearity problem. The authors performed a Monte Carlo simulation to 

evaluate the effectiveness of these three procedures. Also, Mean Squared Errors (MSE) was calculated. Their results 

showed that the RR is more efficient when the number of regressors is small, while the PLSR is more efficient than 

the others when the number of regressors is moderate or high. Biased regression method PCR, PLSR and RR which 

stabilize the variance of the parameter estimate to overcome the problems of multicollinearity were compared by [7]. 

They used different levels of correlations to simulated data that follows normal and uniform distributions to estimate 

the regression coefficients by PCR, PLSR and RR methods. However, they compared the three methods by using 

symmetric loss functions such as, mean square errors (MSE), root mean square errors (RMSE), mean absolute errors 

(MAE) and mean absolute percentage errors (MAPE). Based on their study, they observed that PLSR has a lower 

measure of accuracy when data follows normal distribution while RR shows better results in uniform distribution. 

They finally recommended that these methods can be applied to the same distributions used in their study by varying 

the sample sizes and equally be used to look at the behaviours of other distributions other than those used in their 

research work.  

 

II. METHODOLOGY 

  In this section three prediction methods:  Partial Least Squares Regression (PLSR), Principal component 

Regression (PCR) and ridge Regressions are described briefly which are used in our study to remove the problem of 

multicollinearity. 
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1. Partial Least Square Regression 

The PLSR searches for a set of components (called latent vectors) that performs a simultaneous 

decomposition of  and  with the constraints that this components explain as much as possible the covariance 

between and . In this method, the component was extracted from which the rest of the components are extracted 

in such a way that they are uncorrelated (orthogonal). How this algorithm functions will now be described to show 

how the PLS method works. The first is defined as: 

                (1) 

Where,  are the explanatory variables,  is the dependent variables. 

The  is the coefficient: 

   = , j=1, 2, 3…                                                        (2) 

From which it can be deduced that in order to obtain  the scalar product (  must be calculated for each 

. 

Calculating the second component is justified when the single component model is inadequate i.e. when the 

explanatory power of regression is small and another component is necessary. The second component is denoted by 

 and it will be a linear combination of the regression residues of  variables on components  instead of the 

original variables. In this way, component orthogonality is assured. To do this, the residual for the single component 

regression was calculated according to the equations below: 

with 

                                (3) 

The second component is obtained as: 

                                                       (4) 

With = , j=1, 2, 3…                                                          (5) 

The residuals  are calculated by computing the simple regression of 

 
therefore, 

                                (6) 

Where, the estimators of the regression coefficients have been calculated thus: 

                                  (7) 

Now with and only the scalar products have to be computed , 

for j = 1 . . . , to be able to compute  
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To construct subsequent components, the same steps was performed as for the two previous components. This 

iterative procedure is continued until the number of components to be retained is significant. 

 

2. Principal Components Regression 

The Principal Component Regression is a biased estimation technique in handling multicollinearity. It 

performs least squares estimation on a set of new variables called the Principal Components of the correlation 

matrix. The results in estimation and prediction are superior to ordinary least squares (OLS).  

Suppose, the regression equation may be written in matrix form as 

                (8) 

where Y is the dependent variable, X represents the independent variables, B is the regression coefficients to be 

estimated and e represents the errors or residuals. 

 2.1 PC Regression Basics 

In ordinary least squares, the regression coefficients are estimated using the formula 

                               (9) 

Note that since the variables are standardized, , where is the correlation matrix of independent variables. 

To perform principal components (PC) regression, the independent variables transformed to their principal 

components. Mathematically written according to the equation below: 

                               (10) 

Where  is a diagonal matrix of the eigenvalues of , is the eigenvector matrix of , and is a data matrix 

(similar in structure to ) made up of the PC.  is the orthogonal so that . 

Thus, the new variables  has been created as weighted averages of the original variable . This is nothing new 

since we are used to using transformations such as the logarithm and the square root on the data values prior to 

performing the regression calculations. Since these new variables are PC, their correlations with each other are all 

zero. If variables , , and are used the result will be , , and . 

Severe multicollinearity will be detected as very small Eigenvalues. To get rid the data of the multicollinearity, the 

components (the z’s) associated with small eigenvalues will be omitted. Usually, only one or two relatively small 

eigenvalues will be obtained. For example, if only one small eigen value were detected on a problem with three 

independent variables, we would omit  (the third principal component). 

When regress on and , multicollinearity is no longer a problem. Then the result was transformed back to the 

scale to obtain estimates of . These estimates were biased, but the size of these biases was compensated by the 

decrease in variance. That is, the mean squared error of these estimates is less than that for least squares. 

                           (11) 

Because of the special nature of principal components. Notice that this is ordinary least squares regression applied to 

a different set of independent variables. 

3. Ridge Regression 
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When multicollinearity exists, the matrix  where  consists of the original regressors, becomes nearly 

singular. Since  =  and the diagonal elements of  become quite large, this makes the 

variance of  to be large. This leads to an unstable estimate of  when OLS is used.  

3.1 Steps in Performing Ridge Regression 

STEP I: 

Consider the following regression model: 

                (12) 

Where,  etc. are the parameters of the model and  are random terms. 

STEP II: 

Standardize data by subtracting each  observation from its corresponding mean and dividing by its standard 

deviation i.e.  

STEP III: 

Arrange the predictors into convenient matrix. Suppose we have n observations of k predictors, this will be a 

matrix . And arrange the key parameters into a  So that viewing the response variable as an n-vector, our 

model becomes: 

                  (13) 

Where,  is now a vector of the random noise in the observed data vector  

Note: the least square parameter  can be estimated by finding the parameter values which minimized the sum 

square residuals i.e.  

. The solution turns out to be a matrix equation, 

                                (14) 

Where,  is the transpose of the matrix  

According to [8], the potential instability in using the least squares estimator could be improved by adding a small 

constant  to the diagonal entries of the  marix before taking its inverse. 

The result is the Ridge regression estimator 

                               (15) 

Where  is the  identity matrix and  is the correlation matrix of independent variables values of lambda lie 

in the range (0 and 1). When ,  becomes .Obviously, a key aspect of ridge regression is determining 

what the best value of the constant that is added to the main diagonal of the matrix should be to maximize 

prediction. There are many procedures for determining the best value. The simplest way is to plot the values of each 

versus . The smallest value for which each ridge trace plot shows stability in the coefficient is adopted [9]. 

4. Comparative Study of PLSR, PCR and RR on Simulated Data 

In this section we introduce the several measures of a model's fit to the data and of predictive power used in 

this paper.  
 

i. Mean Square Error (MSE) 
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The MSE measures the average of the squares of the errors or deviations i.e the difference between the estimator and 

what is estimated. 

                                                                                          (16) 

where,  are the true values,  are the predicted values and  is the sample size. 

ii. Root Mean Square Error (RMSE) 

The RMSE is a measure of how well the model fits the data. It is defined as: 

RMSE =                            (17) 

where the  are the values of the predicted variable when all samples are include in the model formation, and  is 

the number of observations.   

 

iii. Mean Absolute Error (MAE) 

The MAE is a quantity used to measure how close predictions are to the eventual outcomes. 

                             (18) 

It is an average of the absolute errors. i.e. , where  is the prediction and  is the true value. 

iv. Mean Absolute Percentage Error (MAPE) 

The MAPE is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses accuracy as 

a percentage, and is defined by the formula: 

                               (19) 

Where,  is the actual value and  is the forecast value. 

The difference between  and  is divided by the Actual value  again. The absolute value in this calculation is 

summed for every forecasted point in time and divided by the number of fitted points . Multiplying it by 100 

makes it a percentage error. 

 

 

SIMULATION SETTINGS 

We compared the PLSR, PCR and RR prediction methods on simulated data that follows lognormal and 

exponential distributions with parameters mean ( ) = 0 and  = 1. The numbers of variables are 5 with 250 

observations. Thus, in the simulation, Monte Carlo study was performed by considering different levels of 

multicollinearity [10], [11, 12] and [7]. 

Also, a dependent variable is generated by using the equation. 
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,                                                  (22) 

where is a normal pseudo random number with mean zero and variance . The simulation was also replicated 

160 times in order to obtain the approximate distribution considered in the study in real life situation. The 

correlations between the variables are 

. 

Variance Inflation Factor (VIF) was also used to check the presence of multicollinearity in the data simulated. 

Therefore the results of simulations are listed below: 
 

TABLE 1: Mean Square Error 
Regressions Probability distributions 

Lognormal  Exponential 

PCR 5.103552 1.163262 

PLSR 3.513678 1.15274 

RR 5.195772 1.166902 

It has been revealed from Table1 that partial least squares regression (PLSR) has high predictive ability at both 

lognormal and exponential distributions which make it better than both PCR and RR. 
 

TABLE 2: Root Mean Square Error 
Regressions Probability distributions  

Lognormal Exponential 

PCR 2.28204 1.078546 

PLSR 1.874481 1.062869 

RR 2.279423 1.080233 

 

From the results of Table 1, it has been observed that partial least squares regression has high predictive abilities at 

both lognormal and exponential distributions, which means that PLSR performed better than both ridge and 

principal component regressions.  
 

TABLE 3: Mean Absolute Error 
Regressions  Probability distributions 

Lognormal Exponential 

PCR 1.330704 0.4449592 

PLSR 1.326204 0.8349363 

RR 1.167424 0.798196 

 

Table 3, revealed that ridge regression has minimum value than  both PLSR and PCR when data follows lognormal 

distribution while when data follows exponential distribution principal component regression has predictive ability 

than both PLSR and RR. Therefore, Ridge Regression performed better at lognormal distribution but at exponential 

distribution principal component performed better.  
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TABLE 4: Mean Absolute Percentage Error 

Regressions  Probability distributions 

Lognormal Exponential 

PCR 2.076961 5.669157 

PLSR 2.285785 5.752208 

RR 2.074079 5.035345 

 

From Table 4, which shows that Ridge Regression the least value at the both lognormal and exponential 

distributions. i.e. Ridge regression performed better at both distributions than PLSR and RR. 

 
 CONCLUSION 

In this paper, PLSR, PCR and RR have been applied to the simulated data and  it shows that PLSR and RR methods 

are generally effective in handling multicollinearity problems both lognormal and exponential distributions.  
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