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Abstract- A subcategory  of a groupoid  is a left order in , if every element of  can be written as  where 

, ∈ . We give a characterization of left orders in groupoids.  
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I. INTRODUCTION 

In this article we investigate left orders in groupoids. This work is part of a continuing investigation of 

categories of quotients. The motivation for our investigation comes from semigroups of quotients and categories 

of fractions. Our purpose is the investigation of a similar problem in groupoid theory. 

Fountain and Petrich introduced the notion of a completely 0-simple semigroup of quotients in [3].  It is well-

known that groupoids are generalisations of groups, also, inverse semigroups can be regarded as special kinds of 

ordered groupoids. The concept of semigroups of quotients extends that of a group of quotients, introduced by 

Ore-Dubreil. We recall that a group  is a group of left quotients of its subsemigroup  if every element of  

can be written as  for some , ∈ . 

The author and Gould [6] have extended the classical notion of left orders in inverse semigroups. They have 

introduced the following definition: Let  be an inverse semigroup. A subsemigroup  of  is a left I-order in  

	 and 	  is a semigroup of left I-quotient of 	 , if every element of 	  can be written as  where            

, ∈ 	and	  is the inverse of a in the sense of inverse semigroup theory. The notions of right I-order and 

semigroup of right I-quotients are defined dually. If  is both a left and a right I-order in an inverse semigroup 

, we say that S is an I-order in  and 	  is a semigroup of  I-quotients of 	 . If we insist on a and b being        

-related in , then we say that  is a straight left I-order in .  

The theory of categories of fractions was developed by Gabriel and Zisman [5]. The key idea is that starting 

with a category  we can associate a groupoid to  by adding all the inverses of all the elements of  to . We 

then produce a groupoid  and a functor :	 →  such that 	is generated by , we call 	a 

category of fractions. Tobias in [4] showed that for any category with conditions which are analogues of  the 

Ore condition in the theory of non-commutative rings (see, [10]), there is a groupoid of fractions. 

Now, we are in a position to define a groupoid of left quotients. Let  be a subcategory of a groupoid . We  

say that  is a left order in  or  is a groupoid of left quotients of  if every element of  can be written as 

 for some , ∈ . Right orders and groupoids of right quotients are defined dually. If  is both a left and 

a  right order in , then  is an order in  and  is a groupoid of quotients of . 
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This work is divided up into three sections. In Section 1 we summarize the background on groupoids and 

inverse semigroups that we shall need throughout the article. A Theorem 1.24 in [2] due to Ore and Dubreil 

shows that a semigroup S has a group of left quotients if and only if it is right reversible, that is, ∩ ∅ 

for all , ∈  and   is cancellative. In Section 2 we prove the category version of such a theorem. We stress 

that this work is not new - it has been studied by a number of authors, by using the notion of category as a 

collection of objects and arrows. We regard a small category as a generealisation of a monoid to prove such a 

theorem. Consequently, the relationship between the groupoids of left quotients and inverse semigroups of left I-

quotients becomes clearer. In Section 3 we show that a groupoid of left quotients is unique up to isomorphism. 

 

II. PRELIMINARIES AND NOTIONS 

In this section we set up the definitions and results about groupoids and inverse semigroups. Standard 

references include [2] for inverse semigroups, and [7] for groupoids.  

There are two definitions of (small) categories. The first one in [7] considers the category as a collection of 

objects (sets) and homomorphisms between them satisfying certain conditions. A category, consists of a set of 

objects , , , … 	and homomorphisms between the objects such that: 

(i) Homomorphisms are composable: given homomorphisms : → 	and : → , the homomorphism         

: → 	exists, otherwise  is not defined; 

(ii) Composition is associative: given homomorphisms : → , : →  and : → , ; 

(iii) Existence of an identity homomorphism: For each object , there is an identity homomorphism            

: → 	such that for any homomorphism : → , . 

A category  is called a subcategory of the category , if the objects of  are also objects of , and the 

homomorphisms of  are also homorphisms of  such that 

(i) for every  in Ob , the identity homomorphism  is in Hom	 ; 

(ii) for every pair of homomorphisms  and  in Hom	  the composite  is in Hom	  whenever it is 

defined. 

The second definition regards the category as an algebraic structure in its own right. In this definition we can 

look at categories as generalisations of monoids. Let  be a set equipped with a partial binary operation which 

we shall denote by ∙ or by concatenation. If , ∈  and the product ∙  is defined we write ∃ ∙ . An element 

∈  is called an identity if ∃ ∙  implies ∙  and ∃ ∙  implies ∙ . The set of identities of  is 

denoted by . The pair    ,∙ 	is said to be a category if the following axioms hold: 

(C1): ∙ ∙  exists if, and only if, ∙ ∙ 	exists, in which case they are equal. 

(C2): ∙ ∙ 	exists if, and only if, ∙  and ∙  exist. 

(C3): For each ∈  there exist identities  and  such that ∃ ∙  and ∃ ∙ . 

It is convenient to write  instead of ∙ . From axiom (C3), it follows that the identities  and  are 

uniquely determined by . We write  and . We call  the domain of  and 	the range 

of . Observe that ∃  if, and only if	 ; in which case 	and . The 

elements of  are called homomorphisms.  
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A subcategory  of a category  is a collection of some of the identities and some of the homomorphisms of 

 which include with each homomorphism, , both  and , and with each composable pair of 

homomorphisms in , their composite. In other words,  is a category in its own right.  

The two definitions are equivalent. The first one can be easily turned into the second one and vice versa. A 

homomorphism a is said to be an isomorphism if there exists an element  such that 	  and 

. 

A groupoid  is a category in which every element is an isomomorhism. A group may be thought of as a one-

object groupoid. A category  is said to be connected if for each , ∈  there is an element  with  

and . Connected groupoids are known as Brandt groupoids.  

If  and ℙ are categories, then : 	 → ℙ  is a homomorphism if ∃  implies that  and 

for all ∈  we have that  and . In case where  and ℙ are groupoids we 

have that	 : 	 → ℙ is a homomorphism if ∃  implies that	  and so . 

The following lemma gives useful properties of groupoids which will be used without further mention. Proofs 

can be found in [8].	 

Lemma 1.1. Let  be a groupoid. Then for any , ∈  we have 

(i) For all ∈  we have  and . 

(ii) If ∃ , then 	and and . 

(iii)  for any ∈ . 

From now on we shall adopt the second definition of categories. In other words, we regard categories as a 

generalisation of monoids. 

Proposition 1.2. [12] Let  be a group and  a non-empty set. Define a partial product on I  by  

, , , , , ,  and undefined in all other cases. Then I  is a connected groupoid, and every 

connected groupoid is isomorphic to one constructed in this way. 

A Brandt semigroup is a completely 0-simple inverse semigroup. By Theorem II.3.5 in [12] every Brandt 

semigroup is isomorphic to B G, I  for some group  and non-empty set I where B G, I 	is constructed as 

follows: 

As a set B G, I I ∪ 0  the binary operation is defined by 

, , , ,
, , ,														 	 ;
0,																										 	

 

and 

, , 0 0 , , 00 0. 

In [2] it is shown that if we adjoin 0 to a Brandt groupoid B, defining 0 if  is undefined in B, we get a 

Brandt semigroup B . 

Let : ∈ 	be a family of disjoint semigroups with zero, and put ∗ ∖ 0 . Let ⋃ ∈
∗ ∪ 0  with 

the multiplication 

∗
		 	 , ∈ 	 	 	 	 	 0	 	 ;
0,																																																																		 .

 

With this multiplication S is a semigroup called a 0-direct union of the . 
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An inverse semigroup  with zero is a primitive inverse semigroup if all its nonzero idempotents are 

primitive, where an idempotent  of  is called primitive if 0 and  implies 0 or . Note that 

every Brandt semigroup is a primitive inverse semigroup. 

Theorem 1.3. [12] Brandt semigroups are precisely the connected groupoids with a zero adjoined, and every 

primitive inverse semigroup with zero is a 0-direct union of Brandt semigroups. 

Notice that a groupoid is a disjoint union of its connected components. 

Theorem 1.4. [12] Let  be a groupoid. Suppose that 0 ∉  and put ⋃ 0 . Define a binary operation on 

 as follows: if , ∈  and ∃ ∙  in the groupoid , then ∙ ; all other products in  are 0. With 

this operation	  is a primitive inverse semigroup. 

Theorem 1.5. [12] Let  be an inverse semigroup with zero. Then  is primitive if, and only if, it is isomorphic 

to a groupoid with zero adjoined. 

In [2], it is shown that every primitive inverse semigroup with zero is a 0-direct union of Brandt semigroups. 

An ordered groupoid ,  is a groupoid  equipped with a partial order  satisfies the following axioms: 

(OG1)  If  then . 

(OG2)  If  and ́ ́  and the products ́  and 	́ are defined then ́ ́ . 

(OG3)  If 	 ∈  is such that  there exists a unique element 	 | ∈ , called the restriction of  

to , such that 	 |  and | . 

(OG3)*  If ∈  is such that  there exists a unique element 	 | ∈ , called the corestriction of 

 to , such that	 |  and | . 

In fact, it is shown in [12] that axiom (OG3)* is a consequence of the other axioms. 

A partially ordered set  is called a meet semilattice if, for every , ∈ X, there is a greatest lower bound 

⋀ .  An ordered groupoid is inductive if the partially ordered set of identities forms a meet-semilattice. An 

ordered groupoid  is said to be ∗-inductive if each pair of identities that has a lower bound has a greatest lower 

bound. We can look at any inverse semigroup as an inductive groupoid; the order is the natural order and the 

multiplication is the usual multiplication. 

We shall now describe the relationship between inverse semigroups and inductive groupoids. We begin with 

the following definition. 

Definition 1.1. For an arbitrary inverse semigroup , the restricted product (also called the `trace product') of 

elements  and  of S is  if  and undefined otherwise. 

Let  be an inverse semigroup with the natural partial order . Define a partial operation ∘ on  as follows: 

∘  defined iff  

in which case ∘ . Then S 	 ,∘  is a groupoid and ,∘,  is an inductive groupoid 

with	 |  and 	 |  and . 

Definition 1.2. Let  ,∙,  be an ordered groupoid and let , ∈  are such that ⋀	  is defined. 

Then the pseudoproduct of x and y is defined as follows:                     

⊗ | | . 
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If ,∙, is an inductive groupoid, then ,⊗  is an inverse semigroup associated of  having the 

same partial order as  such that the inverse of any element in ,∙, 	coincides with the inverse of the same 

element in . The pseudoproduct is everywhere defined in 	and coincides with the product ∙ in  

whenever ∙ is defined, that is, if ∃ . , then ⊗ ∙ .  

It is noted in [12] that in an inductive groupoid , for ∈  and ∈  with , the corestriction |  

is given by | | . By Linking this with the inverse semigroup which associated to , we present a 

short proof in the following lemma.  

Lemma 1.6. Let ,∙,  be an inductive groupoid associated to an inverse semigroup ,⊗ . If ∈  and 

∈  with , then | | . 

Proof. First we show that |  exists. As  and  we have that  . Hence by 

(OG3) | 	exists. To show that | 	is the inverse of | . We note that 

| | | | . 

	Also, 

| | | | . 

We recall that a semigroup	  with zero is defined to be categorical at 0 if whenever , , ∈ 	are such that          

0	and 0, then 0. The set of non-zero elements of a semigroup  will be denoted by ∗.  

Let  be an inverse semigroup which is categorical at zero. Define a partial binary operation ∘ on ∗ by 

∘
,																				 		 ;	

,																	 .		
					 

It is easy to see that (C1) holds. Assume that ∘  and ∘  are defined in ∗ so that 0 and 0 in 

. As  categorical at 0 we have 0	so that ∘ ∘  is defined in ∗. On the other hand, if ∘ ∘  

exists in ∗, then and . Hence ∘  and ∘  exist. Thus 

(C2) holds. For any ∈ ∗	the identities  and 	satisfy (C3). Hence ∗ is a category 

and any element a in ∗ has the same inverse  as in . We have 

Lemma 1.7. Let  be an inverse semigroup with zero. If  categorical at 0, then ∗ ∖ 0   is a groupoid. 

Following [11], we define Green’s relations on an ordered groupoid ,∙, . First we define useful subsets of 

. For a subset H of , we define	  as follows: 

∈ ∶ t 	for	some	 ∈ . 

For , ∈ , put 

: ∈ 	and	∃ . 

We define  and  similarly. 

A nonempty subset I of  is called a right (left ) ideal of  if 

(1) ⊆ 	 ⊆   

(2) if ∈  and , then ∈ . 

We say that  is an ideal of  if it is both a right and a left ideal of . We denote by , ,  the right 

ideal, left ideal, ideal of , respectively, generated by  ( ∈ ). For each ∈ , we have 

∪ , ∪ 	and	 ∪ ∪ ∪ . 
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For an ordered groupoid , the Green’s relations ,  and  defined on  by 

	 	 	 ⟺ ; 

	 	 	 ⟺ ; 

	 	 	 ⟺ . 

It is straightforward to show that a	   for all  in . 

 

Lemma 1.8. Let  be an ordered groupoid and let , ∈ . Then 

(1)	 	 	 	 ⟺ . 

(2) 	 	 	 ⟺ . 

Proof. Suppose that  it is clear that if  we have that 	 	 . If 	then ∈ 	 so that               

∈ ∪ ∈ : 	for	some	 ∈ ∪ . It is easy to see that . Hence . 

Similarly, we can show that . Thus .  

Conversely, suppose that . Let ∈ ∪ 	so that  for some ∈ ∪   so that 

 or ∈ . In the latter case, it is clear that ∈ . In the former case, 

 and as  we have that  and so . Since 

∈ ⊆ ∪ 	we have that ∈ 	and so ⊆ . Similarly, ⊆ . Thus           

 as required.  

 

III. LEFT ORDERS IN GROUPOIDS 

In this section we consider the relationship between left orders in an inductive groupoid  and left I-orders in 

. We give a characterization of left orders in groupoids. By using the second definition of categories we 

prove the category version of theorem due to Ore-Dubreil mentioned in the introduction.  

A category is said to be right (left) cancellative if ∃ ∙ , ∃ ∙ 	 ∃ ∙ , ∃ ∙  and  implies  

( 	implies	 ). A cancellative category is one which is both left and right cancellative.  

Following [9], a category  is said to be right reversible if for all , ∈ , with , there exist 

, ∈  such that . In diagrammatic this just 

 

 

 

 

Let  be a category and	 , ∈  such that  we say that  and  have a pushout, if  for 

some , ∈ . 

 

 

 

x

a

y b 

Figure 2.1 

b

a

y

x 

Figure 2.2 
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Remark 2.1. If a category  is a left order in a groupoid , then any element in  has the form . It is clear 

that 	and 	 	 	 	 . If any two elements in  have a pushout, then  is a right order in . 

Hence  is an order in . We have the following diagram 

 

 

 

Lemma 2.1. A category  is a left order in an inductive groupoid  if and only if ,⊗  is a left I-order 

in	 ,⊗  such that ⊗ , ⊗ ∈  for all ∈ . 

Proof. Suppose that  is a left order in . For any ∈ , there are , ∈  such that for  we 

have 

	

	

	

	

| | 	

| | 	

⊗ . 

We aim to show that the pseudoproduct is everywhere defined in  and coincides with the product · in  

whenever · is defined. If , ∈  and ∃	 . , then . Hence 

⊗ | | 															where	 ⋀ 	

| | 	

	

. . 

As  is a subcategory of 	  we have 	 ⊗ . ∈ . Hence ,⊗ 	is a subsemigroup of ,⊗ .  

Let  be any element of , and let . Then 

| | ⊗ . 

Since  is a subcategory of 	  we have 	 ⊗ ∈ . Similarly, ⊗ ∈ . 

The converse follows by reversing the argument. 

Lemma 2.2. Let  be a semigroup which is a straight left I-order in an inverse semigroup . On the set  define 

a partial product ∘. Then ⋃ ,∘  is a left order in ,∘ . 

Proof. Suppose that  is a straight left I-order in Q. For any ∈ , there are , ∈  such that  with 

	 	 	  so that . Hence  is defined in ,∘  and , ∈ ∪ . It is easy to see that 

: ∈ . Let ∈  for some ∈  and let ∈  such that  is defined in ,∘ 	so 

that . Hence ∈ . Similarly, if  is defined, then  and so 

∈ . Thus	 ⋃ ,∘  is a left order in	 ,∘ .  

The following lemmas give a characterisation for categories which are left orders in groupoids. The proofs of 

such lemmas are quite straightforward and it can be deduced from [5] and [4], but we give it for completeness. 

 

Figure 2.3 

a

u

v b q 
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Lemma 2.3. Let  be a left order in a groupoid . Then 

(i)  is cancellative; 

(ii)  is right reversible; 

(iii) any element in  has the form  for some ∈ . Consequently, . 

Proof. (i) This is clear. 

(ii) Let , ∈  with	  so that  is defined in . Since  is a category of left quotients of , 

we have that  where , ∈  and . Then 

. 

(iii) Let  be an identity in . As  is a left order in  we have that 		  for some , ∈  so that           

. Since  is identity and 	we have 

. 

Hence ∈  so that ⊆ . Thus .  

Lemma 2.4. Suppose that  is a groupoid of left quotients of . Then for all , , c, d ∈  the following are 

equivalent: 

		 ; 

(ii) there exist , ∈  such that 		and ; 

(iii) , 	and for all , ∈  we have 	 ⟺  . 

Proof. ⇒ . Suppose that  for , , , ∈  so that   and . By 

Lemma 2.3,  is right reversible and so there are elements , ∈  such that . As, 

	and	  we have 

. 

Since  and 	we have 

. 

Hence . As 	and  we have that . 

⇒ .  It is clear that  and . Let  and . Suppose that  

for all , ∈ . We have to show that . By Lemma 2.3,  is right reversible and cancellative. Hence 

since	 , it follows that  for some , ∈ . Now, 

, 
cancelling in  gives that	 . Then 

, 
again cancelling in  gives that	  as required. 

⇒ .		Since	  is right reversible we have that  for some , ∈  so that . Then 

, 

so that 

, 

as required.  

Lawson has deduced the following from [5]. He has called the groupoid  in such a theorem a groupoid of 

fractions of . 
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Theorem 2.5. [9] Let  be a right reversible cancellative category. Then  is a subcategory of a groupoid  

such that the following three conditions hold: 

(i) . 

(ii) Every element of  is of the form  where , ∈ . 

(iii)  if and only if there exist , ∈  such that 	and .  

Proof. Our proof is basically the same as the proof given by Tobais Fritz [4] in the case of categories as a 

collections of objects and homomorphisms, but our presentation is slightly different as we shall use the second 

definition of categories. 

From Lemmas 2.3 and 2.4, (i) and (iii) are clear. 

To prove (ii) suppose that  is right reversible and cancellative. We aim to construct a groupoid  in which  is 

embedded as a left order in . This construction is based on ideas by Tobias Fritz [4] and Cegarra, the author 

and Petrich [1]. Let 

, ∈ ∶ . 

Define a relation , ~ ,  on  by 

, ~ , 	⟺ 	 	 , ∈ 	 	 	 	 	 . 

We can represent this relation by the following diagram  

 

 

 

 

 

Notice that if  , ~ , , then	 	and	 .            

Lemma 2.6. The relation ~ defined above is an equivalence relation. 

Proof. It is clear that	~ is symmetric and reflexive. Let 

, ~ , ~ , , 

where , , ,  and , 	in . Hence there exist , , , , ∈  such that 

, 	and	 ̅ , ̅ . 

To show that ~ is transitive, we have to show that there are elements , , ∈  such that ̅  and ̅ . 

Since  is right reversible and ̅  there are elements , ∈  such that ̅. Hence 

̅ . 

Similarly,  as required.  

Let ,  denote the ~-equivalence class of , . On ~ we define a product as follows. Let 

, , , ∈ . Their product is defined iff . Define 

	 , , 	
, ,											 	 		 	 , ∈ ;

undefined,																												otherwise,													
 

and so we have the following diagram 

 

 

 

ba

dc
y

x

Figure 2.4 

a

yx

cb
d

Figure 2.5 
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Lemma 2.7. The multiplication is well-defined. 

Proof. Suppose that	 , ,  and 	 , ,  are in . Then there are elements , , ,  in 

 such that 

,	

,	

,	

. 

 

Now, 

, , , 	 	  

for some , ∈  and 

, , , ̅ 	 	 ̅  

for some , ̅ ∈ . 

It is easy to see that , ,  is defined if and only if , , 	is defined. We have to prove that 

	 , , ̅ , that is,  

	and	 ̅ , for	some	 , ∈ . 

Since  is defined and  we have that  is defined and . Similarly,  is 

defined and . Hence	 , by the right reversibility of  there are elements , ∈  

with . It remains to show that ̅ . By Lemma 2.4,  and as  

and ̅  we have that ̅ 	and so ̅ , again by Lemma 2.4.  

Lemma 2.8. The multiplication is associative. 

Proof. Let , , , , , ∈  and set 

, , , , ,  

where  for some , ∈  and 

, , , , ̅ ,  

where	 ̅  for some ̅ , ∈ . It is clear that X is defined if and only if 	Y is defined. We assume that 

, ,  and , ,  are defined. Then for some , , ̅ , ∈  we have 

, , 	

,  

where  for some , ∈ . 

, ̅ , 	

̅ , ̅  

where ̅ ̅ ̅  for some ̅, ̅ ∈ . We have to show that 

, ̅ , ̅ . 

Then by definition we need to show that 

̅ 	 	 ̅  

for some , ∈ . By cancellativity in  this equivalent to ̅ and ̅ . 
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Since  and  are defined we have that  is defined and as ̅  is defined so that ̅ . By 

right reversibility of  we have that ̅  for some , ∈ . By cancellativity in  we get ̅. 

Now, since ̅ , ̅ ̅ ̅  and  we have that ̅ ̅ . As  is cancellative we have  

that ̅ ̅ so that ̅ ̅ , but  and ̅  so that ̅ . Thus ̅  as 

required.  

For	 , ∈  where  is defined in  for some ∈ , it is clear that , ∈  and  and        

. Hence we have 

Lemma 2.9. If , , , ∈ , then , ,  for all ∈  such that  is defined in . 

Lemma 2.10. The identities of  have the form  , 	where ∈ . 

Proof. Suppose that , 	is an identity in  where , ∈ . Let , ∈  such that , ,  is 

defined and 

, , , . 

Then , ,  for some , ∈  with . Hence 

	and	  

for some , ∈ ; cancelling in  gives that  so that . Again, by cancellativity, it 

follows that 	and as 	we have that . Using cancellativity in  once more we 

obtain . Thus , . Similarly, if , , ,  we have that . 

It remains to show that the identity is unique. Suppose that 

, , , , ,  

for some identities , , , ∈ . Then by definition , ́ , ́  where  and ́ ́  for 

some , , ́ , ́ ∈ . Hence ́  and	 ́ . By definition of ~ and Lemma 2.9, 

, , ́ , ́ ,  

As required. Similarly, , , , , ,  implies that , , . 

Suppose that , ∈ . Then as  we have 

, , , , . 

Similarly,  whence 

, , , , . 

Hence , ,  and , , . 

By the above argument and Lemma 2.8, the following lemma is clear. 

Lemma 2.11.  is a category. 

If , ∈ , then it is clear that	 , ∈ , as  we have 

, , , , , .  

Similarly, , , , , . That is, , 	is the inverse of ,  in . Thus we have 

Lemma 2.12.  is a groupoid. 

Lemma 2.13. The mapping :	 →  defined by	 ,  is an embedding of  in . 

Proof. It is clear that  is well-defined. To show that  is one-to-one, let , ,  so that	  

and  for some , ∈ . Hence . 
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Let , ∈  such that ab is defined. We have 

, , 	

, 												where	 	for	some	 , ∈ 	

, 								as	 	

, 													by	Lemma	2.9					

, 										as	 		

.	 

Thus  is a homomorphism.  

From (i) we know that . Hence  is a left order in . This completes the proof of Theorem 2.5.  

Corollary 2.14. A subcategory  is a left order in a groupoid  if and only if  is right reversible and 

cancellative. 

Proof. If  is a left order in a groupoid , then by Lemma 2.3,  is right reversible and cancellative. 

Conversely, if  is right reversible and cancellative, then by (ii) in Theorem 2.5,  is a left order in a groupoid 

. 

IV. UNIQUENESS 

In this section we show that a category  has, up to isomomorphism, at most one groupoid of left I-quotients. 

Theorem 3.1. Let  be a left order in groupoid . If  is an embedding of  to a groupoid , then there is a 

unique embedding : 	 →  such that | . 

Proof. Define : 	 →  by 

	 

, , ∈ . Suppose that 

 

so that  and  for some , ∈ , by Lemma 2.4. Hence 

	 	  

in . Thus 

 

so that 

. 

It follows that  is well-defined and 1-1. It remains for us to show that  is a homomorphism. Let  

, ∈  where , , , ∈ . Now, 

	

	

, 

where  for some , ∈ . We have that  and so . Hence 

	

	 	

. 
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Finally, to see that  is unique, suppose that : 	 →  is an embedding with | . Then for an element  

 of , we have 

	  

so that . 

The following corollary is straightforward.  

Corollary 3.2. If a category  is a left order in groupoids  and ℙ, then  and ℙ are isomorphic by an 

isomorphism which restricts to the identity map on . 
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