MAYFEB Journal of Mathematics - ISSN 2371-6193
Vol 2 (2017) - Pages 48-60

Groupoids of Left Quotients

N. Ghroda, Al-Jabal Al-Gharbi University, Gharian, Libya, nassraddin2010@gmail.com

Abstract- A subcategory C of a groupoid G is a left order in G, if every element of G can be written as a~1h where

a,b € C. We give a characterization of left orders in groupoids.
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I.  INTRODUCTION

In this article we investigate left orders in groupoids. This work is part of a continuing investigation of
categories of quotients. The motivation for our investigation comes from semigroups of quotients and categories
of fractions. Our purpose is the investigation of a similar problem in groupoid theory.

Fountain and Petrich introduced the notion of a completely 0-simple semigroup of quotients in [3]. It is well-
known that groupoids are generalisations of groups, also, inverse semigroups can be regarded as special kinds of
ordered groupoids. The concept of semigroups of quotients extends that of a group of quotients, introduced by
Ore-Dubreil. We recall that a group G is a group of left quotients of its subsemigroup S if every element of G
can be written as a~1b for some a, b € S.

The author and Gould [6] have extended the classical notion of left orders in inverse semigroups. They have
introduced the following definition: Let Q be an inverse semigroup. A subsemigroup S of Q is a left I-order in
Q and Q is a semigroup of left I-quotient of S, if every element of Q can be written as a~'b where
a,b € Sand a™?! is the inverse of a in the sense of inverse semigroup theory. The notions of right I-order and
semigroup of right I-quotients are defined dually. If S is both a left and a right I-order in an inverse semigroup
Q, we say that S is an l-order in Q and Q is a semigroup of I-quotients of S. If we insist on a and b being
R-related in Q, then we say that S is a straight left I-order in Q.

The theory of categories of fractions was developed by Gabriel and Zisman [5]. The key idea is that starting
with a category C we can associate a groupoid to C by adding all the inverses of all the elements of C to C. We
then produce a groupoid G(C) = C~1C and a functor &: C - G such that G(C) is generated by t(C), we call G a
category of fractions. Tobias in [4] showed that for any category with conditions which are analogues of the
Ore condition in the theory of non-commutative rings (see, [10]), there is a groupoid of fractions.

Now, we are in a position to define a groupoid of left quotients. Let C be a subcategory of a groupoid G. We
say that C is a left order in G or G is a groupoid of left quotients of C if every element of G can be written as
a~'b for some a, b € C. Right orders and groupoids of right quotients are defined dually. If C is both a left and

a right order in G, then C is an order in G and G is a groupoid of quotients of C.
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This work is divided up into three sections. In Section 1 we summarize the background on groupoids and
inverse semigroups that we shall need throughout the article. A Theorem 1.24 in [2] due to Ore and Dubreil
shows that a semigroup S has a group of left quotients if and only if it is right reversible, that is, Sa N Sb # @
forall a,b € S and S is cancellative. In Section 2 we prove the category version of such a theorem. We stress
that this work is not new - it has been studied by a number of authors, by using the notion of category as a
collection of objects and arrows. We regard a small category as a generealisation of a monoid to prove such a
theorem. Consequently, the relationship between the groupoids of left quotients and inverse semigroups of left I-

quotients becomes clearer. In Section 3 we show that a groupoid of left quotients is unique up to isomorphism.

II.  PRELIMINARIES AND NOTIONS

In this section we set up the definitions and results about groupoids and inverse semigroups. Standard
references include [2] for inverse semigroups, and [7] for groupoids.

There are two definitions of (small) categories. The first one in [7] considers the category as a collection of
objects (sets) and homomorphisms between them satisfying certain conditions. A category, consists of a set of
objects {a, b, ¢, ... } and homomorphisms between the objects such that:

(i) Homomorphisms are composable: given homomorphisms a:u — v and b: v = w, the homomorphism
ab:u — w exists, otherwise ab is not defined;

(ii) Composition is associative: given homomorphisms a: u = v, b: v - w and c:w — z, (ab)c = a(bc);

(iii) Existence of an identity homomorphism: For each object u, there is an identity homomorphism

e, u = u such that for any homomorphism a: u = v, e, a = a = ae,.

A category T is called a subcategory of the category C, if the objects of T are also objects of C, and the
homomorphisms of T are also homorphisms of C such that
(i) for every u in Ob(T), the identity homomorphism e, is in Hom T;
(ii) for every pair of homomorphisms f and g in Hom T the composite fg is in Hom T whenever it is
defined.

The second definition regards the category as an algebraic structure in its own right. In this definition we can
look at categories as generalisations of monoids. Let C be a set equipped with a partial binary operation which
we shall denote by -+ or by concatenation. If x, y € C and the product x * y is defined we write 3x - y. An element
e € C is called an identity if Je - x implies e - x = x and Jx - e implies x - e = x. The set of identities of C is
denoted by Cqy. The pair (C,’) is said to be a category if the following axioms hold:

(C1): x - (y - z) exists if, and only if, (x - y) - z exists, in which case they are equal.
(C2): x - (y - z) exists if, and only if, x - y and y - z exist.
(C3): For each x € C there exist identities e and f such that 3x - e and 3f - x.

It is convenient to write xy instead of x - y. From axiom (C3), it follows that the identitics e and f are
uniquely determined by x. We write e = r(x) and f = d(x). We call d(x) the domain of x and r(x) the range
of x. Observe that 3xy if, and only ifr(x) = d(y); in which case d(xy) = d(x) and r(xy) = r(y). The

elements of C are called homomorphisms.
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A subcategory T of a category C is a collection of some of the identities and some of the homomorphisms of
C which include with each homomorphism, a, both d(a) and r(a), and with each composable pair of
homomorphisms in T, their composite. In other words, T is a category in its own right.

The two definitions are equivalent. The first one can be easily turned into the second one and vice versa. A
homomorphism a is said to be an isomorphism if there exists an element a~! such that r(a) = a™'a and

d(a) = aa™ 1.

A groupoid G is a category in which every element is an isomomorhism. A group may be thought of as a one-
object groupoid. A category G is said to be connected if for each e, f € G, there is an element x with d(x) = e

and r(x) = f. Connected groupoids are known as Brandt groupoids.

If G and P are categories, then ¢: G — P is a homomorphism if Jxy implies that (xy)p = (x¢)(ye) and
for all x € G we have that (d(x))¢ = d(x¢) and (r(x))¢ = r(x¢). In case where G and IP are groupoids we
have that ¢: G — P is a homomorphism if 3xy implies that (xy)¢ = (x@)(y@) and so x 1@ = (x@)~ 1.

The following lemma gives useful properties of groupoids which will be used without further mention. Proofs
can be found in [8].
Lemma 1.1. Let G be a groupoid. Then for any x,y € G we have
(i) For all x € G we have r(x™1) = d(x) and d(x~1) = r(x).
(ii) If Axy, then x~1(xy) = y and (xy)y~! = xand (xy)~! = y~1x~1.
(i) (x71)™! = x for any x € G.
From now on we shall adopt the second definition of categories. In other words, we regard categories as a
generalisation of monoids.
Proposition 1.2. [12] Let G be a group and I a non-empty set. Define a partial product on 1 X G X[ by
(i,9,))(, h, k) = (i, gh, k) and undefined in all other cases. Then I X G X I is a connected groupoid, and every
connected groupoid is isomorphic to one constructed in this way.
A Brandt semigroup is a completely 0-simple inverse semigroup. By Theorem II.3.5 in [12] every Brandt
semigroup is isomorphic to B(G,I) for some group G and non-empty set I where B(G,I) is constructed as
follows:

As aset B(G, 1) = (I x G x I) U {0} the binary operation is defined by

(i,ab, D), ifj=k;
0, else

(a )b =]
and
(i,a,j)0 = 0(i,a,j) = 00 = 0.
In [2] it is shown that if we adjoin 0 to a Brandt groupoid B, defining xy = 0 if xy is undefined in B, we get a

Brandt semigroup B°.

Let {S;:i € I} be a family of disjoint semigroups with zero, and put S;* = S\ {0}. Let S = U;¢,S; U 0 with
the multiplication

ab if a,b € S; for someiand ab # 0inS;;

a*b={ 0, else.

With this multiplication S is a semigroup called a O-direct union of the S;.
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An inverse semigroup S with zero is a primitive inverse semigroup if all its nonzero idempotents are
primitive, where an idempotent e of S is called primitive if e # 0 and f < e implies f = 0 or e = f. Note that
every Brandt semigroup is a primitive inverse semigroup.

Theorem 1.3. [12] Brandt semigroups are precisely the connected groupoids with a zero adjoined, and every
primitive inverse semigroup with zero is a 0-direct union of Brandt semigroups.

Notice that a groupoid is a disjoint union of its connected components.

Theorem 1.4. [12] Let G be a groupoid. Suppose that 0 ¢ G and put G® = GU{0}. Define a binary operation on
G° as follows: if x,y € G and 3x - y in the groupoid G, then xy = x - y; all other products in G® are 0. With
this operation G is a primitive inverse semigroup.
Theorem 1.5. [12] Let S be an inverse semigroup with zero. Then § is primitive if, and only if, it is isomorphic
to a groupoid with zero adjoined.
In [2], it is shown that every primitive inverse semigroup with zero is a 0-direct union of Brandt semigroups.

An ordered groupoid (G, <) is a groupoid G equipped with a partial order < satisfies the following axioms:

(OG1) Ifx <ythenx 1<y~ 1

(0OG2) If x < y and x < y and the products xx and yy are defined then xx < yy.

(OG3) If e € Gy is such that e < d(x) there exists a unique element (e|x) € G, called the restriction of x
to e, such that (e|x) < x and d(e|x) = e.

(OG3)" If e € G, is such that e < r(x) there exists a unique element (x|e) € G, called the corestriction of

X to e, such that (x|e) < x and r(x|e) = e.

In fact, it is shown in [12] that axiom (OG3)" is a consequence of the other axioms.

A partially ordered set X is called a meet semilattice if, for every x,y € X, there is a greatest lower bound
x/N\y. An ordered groupoid is inductive if the partially ordered set of identities forms a meet-semilattice. An
ordered groupoid G is said to be *-inductive if each pair of identities that has a lower bound has a greatest lower
bound. We can look at any inverse semigroup as an inductive groupoid; the order is the natural order and the
multiplication is the usual multiplication.

We shall now describe the relationship between inverse semigroups and inductive groupoids. We begin with
the following definition.

Definition 1.1. For an arbitrary inverse semigroup S, the restricted product (also called the “trace product') of
elements x and y of Sis xy if x“*x = yy~! and undefined otherwise.

Let S be an inverse semigroup with the natural partial order <. Define a partial operation o on S as follows:

x oy defined iff x 1x = yy~?!
in which case x oy = xy. Then G(S) = (S,°) is a groupoid and G(S) = (S,,<) is an inductive groupoid
with (x|e) = xe and (e]x) = ex and e = x txyy~1.
Definition 1.2. Let (G,,, <) be an ordered groupoid and let x, y € G are such that e = r(x)A d(y) is defined.

Then the pseudoproduct of x and y is defined as follows:
x ®y = (xle)(ely).
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If (G,7, <)is an inductive groupoid, then §(G) = (G,&) is an inverse semigroup associated of G having the
same partial order as G such that the inverse of any element in (G,,, <) coincides with the inverse of the same
element in $(G). The pseudoproduct is everywhere defined in $(G) and coincides with the product - in G
whenever - is defined, that is, if 3x.y, thenx @ y = x - y.

It is noted in [12] that in an inductive groupoid G, for a € G and e € G, with e < r(a), the corestriction e|a
is given by (e|a) = (a~'|e)~1. By Linking this with the inverse semigroup which associated to G, we present a
short proof in the following lemma.

Lemma 1.6. Let (G,-, <) be an inductive groupoid associated to an inverse semigroup (G,&). If a € G and
e € Gy with e < d(a), then (a™t|e)™! = (e|a).
Proof. First we show that (a™|e) exists. As e < d(a) and d(a) = r(a™!) we have thate < r(a™!) . Hence by
(OG3) (a1|e) exists. To show that (a~!|e) is the inverse of (e|a). We note that
(atle)(ela)(a~tle) = (a'e)(ea)(a"'e) = a™e = (a7']e).
Also,
(ela)(a™te)(ela) = (ea)(a"e)(ea) = ea = (e|a).

We recall that a semigroup Q with zero is defined to be categorical at O if whenever a, b, ¢ € Q are such that
ab # 0 and bc # 0, then abc # 0. The set of non-zero elements of a semigroup S will be denoted by S*.

Let Q be an inverse semigroup which is categorical at zero. Define a partial binary operation o on Q* by

dob = { ab, if a~a=>bb1
undefined, otherwise.

It is easy to see that (C1) holds. Assume that a o b and b o ¢ are defined in Q* so that ab # 0 and bc # 0 in
Q. As Q categorical at 0 we have abc # 0 so that a o (b o ¢) is defined in Q*. On the other hand, if a o (b o ¢)
exists in Q*, then b™b = cc™land a™la = (bc)(bc)™! = bcc bt = bb~1. Hence a o b and b o c exist. Thus
(C2) holds. For any a € Q* the identities d(a) = aa™! and r(a) = a™'a satisfy (C3). Hence Q* is a category
and any element a in Q* has the same inverse a~! as in Q. We have

Lemma 1.7. Let Q be an inverse semigroup with zero. If Q categorical at 0, then Q* = Q \ {0} is a groupoid.

Following [11], we define Green’s relations on an ordered groupoid (G,, <). First we define useful subsets of

G. For a subset H of G, we define (H] as follows:
(Hl]={teG:t< hforsomeh € H}.
Fora,b € G, put
Ga = {xa:x € G and Ixa}.

We define aG and aGb similarly.
A nonempty subset | of G is called a right (left ) ideal of G if

HIGeI(GI S

(2)ifa€landb < a,thenb € 1.
We say that I is an ideal of G if it is both a right and a left ideal of G. We denote by R(a), L(a),I(a) the right
ideal, left ideal, ideal of G, respectively, generated by a (a € G). For each a € G, we have

R(a) = (aVaG],L(a) = (aVU Ga] and I(a) = (a U aG U Ga U GaG].
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For an ordered groupoid G, the Green’s relations R, £ and J defined on G by
aRb < R(a) =R(b);
alb < L(a) =L(b);
aJb < j(a) =]b).
It is straightforward to show that a aG = d(a)G (Ga = Gr(a)) for all a in G.

Lemma 1.8. Let G be an ordered groupoid and let a, b € G. Then

(HaRb < d(a) =d(b).

2)aLb < r(a) =r().
Proof. Suppose that R(a) = R(b) it is clear that if a = b we have that a R b. If a # b then a € R(b) so that
a€(UbG]={t€G:t<hforsomeh € bUbG}. It is easy to see that aa™! < bb~1. Hence d(b) < d(a).
Similarly, we can show that d(b) < d(a). Thus d(a) = d(b).

Conversely, suppose that d(a) = d(b). Let x € R(a) = (a U aG] so that x < h for some h € a U aG so that
h=a or h€aG=d(a)G =d(b)G = bG. In the latter case, it is clear that x € R(b). In the former case,
d(h) =d(a) and as x < h we have that xx™* < hh™! = d(h) = d(a) = d(b) and so x < d(a)x. Since
d(a)x € bG < bUbGwe have that x € R(b)and so R(a) € R(b). Similarly, R(b) € R(a). Thus
R(b) = R(a) as required.

III.  LEFT ORDERS IN GROUPOIDS

In this section we consider the relationship between left orders in an inductive groupoid G and left I-orders in
8(G). We give a characterization of left orders in groupoids. By using the second definition of categories we
prove the category version of theorem due to Ore-Dubreil mentioned in the introduction.

A category is said to be right (left) cancellative if 3x-a,3y-a (3a-x,3a - y) and xa = ya implies x = y

(ax = ay implies x = y). A cancellative category is one which is both left and right cancellative.

Following [9], a category C is said to be right reversible if for all a,b € C, with r(a) = r(b), there exist

x,y € Csuch that xa = yb. In diagrammatic this just

yl_»l :

a
Figure 2.1

Let C be a category and a, b € C such that d(a) = d(b) we say that a and b have a pushout, if ax = by for

bl_i .

y
Figure 2.2

some x,y € C.
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Remark 2.1. If a category C is a left order in a groupoid G, then any element in G has the form a™1b. It is clear
that d(a) = d(b) and a* R a™b L b. If any two elements in C have a pushout, then C is a right order in G.

Hence C is an order in G. We have the following diagram

Figure 2.3
Lemma 2.1. A category C is a left order in an inductive groupoid G if and only if (C,Q) is a left [-order
in (G,®) suchthata ® a™t,a " ® a € Cforall a € C.
Proof. Suppose that C is a left order in G. For any q € G, there are a, b € C such that for e = aa™*hb~! we
have
g=a'b
=ataa bbb
= (a"'e)(eb)
= (ea)"*(eb)
= (ela)~'(elb)
= (a"'le)(elb)
=a1®b.
We aim to show that the pseudoproduct is everywhere defined in C and coincides with the product - in C
whenever - is defined. If a, b € C and 3 a. b, then r(a) = d(b). Hence
a® b = (ale)(e|b) where e = r(a)Ad(b) = r(a) = d(b)
= (alr(a))(eld(b))
= (ar(a)(d(b)b)
=a.b.
As C is a subcategory of G we have a @ b = a.b € C. Hence (C,®) is a subsemigroup of (§,&).
Let a be any element of C, and let e = aa™!. Then
r(a) =a'a=ataa 'a =alea = (ate)(ea) = (a7tle)(e|la) = a ' ® a.
Since C is a subcategory of G we have a™! ® a = a™*a = r(a) € C. Similarly, a ® a ! = aa™! = d(a) € C.
The converse follows by reversing the argument.
Lemma 2.2. Let S be a semigroup which is a straight left I-order in an inverse semigroup Q. On the set Q define
a partial product o. Then (SUE(Q),?) is a left order in (Q,°).
Proof. Suppose that S is a straight left I-order in Q. For any q € Q, there are ¢,d € S such that ¢ = ¢~d with
cRd so that cc™* = dd™1. Hence q = c¢™1d is defined in (Q,¢) and ¢,d € S U E(Q). It is easy to see that
E(Q) ={aa ':a € S}. Let a~'a € E(Q) for some a € S and let b € S such that ba™'a is defined in (Q,°) so
that b™*b = a~'a. Hence b = bb™'b = ba™'a € S. Similarly, if a~tab is defined, then a~a = bb~?! and so
b =bb b =atab € S. Thus (SUE(Q),0) is a left order in (Q,°).
The following lemmas give a characterisation for categories which are left orders in groupoids. The proofs of

such lemmas are quite straightforward and it can be deduced from [5] and [4], but we give it for completeness.
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Lemma 2.3. Let C be a left order in a groupoid G. Then
(i) C is cancellative;
(ii) C is right reversible;
(iii) any element in G, has the form a~'a for some a € C. Consequently, Co = G,.
Proof. (i) This is clear.
(ii) Let a, b € C withr(a) = r(b) so that ab™! is defined in G. Since G is a category of left quotients of C,
we have that ab™! = x~1y where x,y € C and d(x) = d(y). Then
xa = xab™'b = xx~1yb = yb.
(iii) Let e be an identity in Go. As C is a left order in G we have that e = a~!b for some a,b € C so that
d(a) = d(b). Since e is identity and d(a) = d(b) we have
a=ae=aa'h=d(b)b=hb.
Hence e = a~ta = r(a) € Cy so that Gy S Cy. Thus Cy = Gy,.
Lemma 2.4. Suppose that G is a groupoid of left quotients of C. Then for all a, b, c,d € C the following are
equivalent:
(i) a b =c71d;
(ii) there exist x, y € C such that xa = yc and xb = yd,
(iii) r(a) = r(c), r(b) = r(d) and for all x,y € C we have xa = yc & xb = yd.
Proof.(i) = (ii). Suppose that a=b = c~1d for a,b,c,d € C so that r(a) =r(c) and r(b) =r(d). By
Lemma 2.3, C is right reversible and so there are elements x,y € C such that xa =yc. As,

r(x) = d(a) and r(y) = d(c) we have

1 1 _ ,-1

ac”t =x"xac™! = x"lyccTt =x
Since d(a) = d(b) and d(c) = d(d) we have

cal=ca 'bb™t =cc7ldb™t = dbL.
Hence db™! = ca™! = y~'x. As d(x) = d(y) and r(b) = r(d) we have that xb = yd.

(it) = (iii). It is clear that r(a) = r(c) and r(b) = r(d). Let xa = yc and xb = yd. Suppose that ta = rc

y.

for all t,r € C. We have to show that tb = rd. By Lemma 2.3, C is right reversible and cancellative. Hence
since r(y) = r(r), it follows that ky = hr for some k, h € C. Now,

kxa = kyc = hrc = hta,
cancelling in C gives that kx = ht. Then

htb = kxb = kyd = hrd,
again cancelling in C gives that th = rd as required.

(iii) = (i). Since C is right reversible we have that ta = rc for some t,r € C so that th = rd. Then
ac ' =t"r =bd™?,
so that
a b =a'bd'd =atac™ld = ¢c71d,
as required.
Lawson has deduced the following from [5]. He has called the groupoid G in such a theorem a groupoid of

fractions of C.
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Theorem 2.5. [9] Let C be a right reversible cancellative category. Then C is a subcategory of a groupoid G
such that the following three conditions hold:

(1) Co = Go.

(ii) Every element of G is of the form a~*b where a, b € C.

(iii) a=1b = c¢~d if and only if there exist x, ¥ € C such that xa = yc and xb = yd.
Proof. Our proof is basically the same as the proof given by Tobais Fritz [4] in the case of categories as a
collections of objects and homomorphisms, but our presentation is slightly different as we shall use the second
definition of categories.
From Lemmas 2.3 and 2.4, (i) and (iii) are clear.
To prove (ii) suppose that C is right reversible and cancellative. We aim to construct a groupoid G in which C is
embedded as a left order in G. This construction is based on ideas by Tobias Fritz [4] and Cegarra, the author
and Petrich [1]. Let

G ={(a,b) eCxC:d(a) =d(b)}
Define a relation (a, b)~(c, d) on G by
(a,b)~(c,d) © there exist x,y € C such that xa = yc and xb = yd.

We can represent this relation by the following diagram
5N
X
y
c d

Figure 2.4
Notice that if (a,b)~(c,d), thenr(a) = r(c) and r(b) = r(d).
Lemma 2.6. The relation ~ defined above is an equivalence relation.
Proof. It is clear that ~ is symmetric and reflexive. Let
(a,b)~(c,d)~(p,q),

where (a, b), (c,d) and (p, q) in G. Hence there exist x, y, X, ¥, € C such that

xa = yc,xb = yd and Xc = yp, xd = yq.
To show that ~ is transitive, we have to show that there are elements z, Z, € C such that za = Zp and zb = Zq.
Since C is right reversible and r(y) = r(x) there are elements s, t € C such that sy = tx. Hence

sxa = syc = txc = typ.
Similarly, sxb = tyq as required.
Let [a,b] denote the ~-equivalence class of (a,b). On G = Ef“’/ ~ we define a product as follows. Let

[a, b], [c,d] € G. Their product is defined iff r(b) = r(c). Define

_ ([xa,yd], if xb =yc forsomex,y € C;
[a,b]c,d] = { undefined, otherwise,

and so we have the following diagram

/ y
AN

Figure 2.5
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Lemma 2.7. The multiplication is well-defined.

Proof. Suppose that [a;, b;] = [a,, b;] and [cq,d;] = [cy, d] are in G. Then there are elements x4, X5, ¥, Y, in

C such that
X141 = X204z,
x1by = x;b,,
V161 = V202,
y1dy = y2d;.
Now,

[as, by]lcy,di] = [wa,, wd,] and wb, = wc,
for some w,w € C and
[az, byllcy, dy] = [za,, zd,] and zb, = Zc,
for some z,z € C.
It is easy to see that [aq, b;][c;,d;] is defined if and only if [a,, b,][c,, d5] is defined. We have to prove that
[wa,,wd,] = [za,, Zd,], that is,
xwa, = yza, and xwd, = yzd,, for some x,y € C.

Since wb; is defined and d(a,) = d(b,) we have that wa, is defined and r(a,) = r(wa,). Similarly, za, is
defined and r(a,) = r(za,). Hence r(wa,) = r(za,), by the right reversibility of C there are elements x,y € C
with xwa, = yza,. It remains to show that xwd, = yzd,. By Lemma 2.4, xwb, = yzb, and as wb; = wc,
and zb, = Zc, we have that xwc; = yzc, and so xwd; = yzd,, again by Lemma 2.4.
Lemma 2.8. The multiplication is associative.
Proof. Let [a, b], [c,d], [p, q] € G and set

X = (la, b[c, dDlIp, q] = [xa,yd][p, q]
where xb = yc for some x,y € C and

Y = [a,b]([c,dllp, q]) = [a, b][Xc, yq]
where Xxd = yp for some %,y € C. It is clear that X is defined if and only if Y is defined. We assume that
[a, b][c,d] and [c, d][p, q] are defined. Then for some x,y, %,y € C we have

X = [xa,yd][p, q]
= [sxa,rq]
where syd = rp for some s,7 € C.
Y = [a, b][%c, yq]
= [Sa,7yq]
where §b = rxc for some §,7 € C. We have to show that
X = [sxa,rq] = [Sa,Tyq] =Y.
Then by definition we need to show that
wsxa = wsa and wrq = wiryq

for some w,w € C. By cancellativity in C this equivalent to wsx = wWs and wr = wry.
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Since xb and sx are defined we have that sxb is defined and as 5b is defined so that r(5b) = r(sxb). By

right reversibility of C we have that wsxb = wsb for some w, w € C. By cancellativity in C we get wsx = Wws.

Now, since wsxb = wsb,5b = rxc and xb = yc we have that wsyc = wrxc. As C is cancellative we have
that wsy = wix so that wsyd = wrxd, but syd = rp and xd = yp so that wrp = wryp. Thus wr = Wiy as

required.

For [a, b] € G where xa is defined in C for some x € C, it is clear that[xa, xb] € G and d(x)xa = xa and
d(x)xb = xb. Hence we have
Lemma 2.9. If [a, b], [xa, xb] € G, then [xa, xb] = [a, b] for all x € C such that xa is defined in C.
Lemma 2.10. The identities of G have the form [a, a] where a € C.
Proof. Suppose that e = [a, b] is an identity in G where a,b € C. Let [m,n] € G such that [m,n][a, b] is
defined and

[m,n][a, b] = [m,n].
Then [xm, yb] = [m,n] for some x,y € C with xn = ya. Hence
uxm = vm and uyb = vn
for some u,v € C; cancelling in C gives that ux = v so that uyb = vn = uxn. Again, by cancellativity, it
follows that xn = yb and as xn = ya we have that yb = xn = ya. Using cancellativity in C once more we
obtain a = b. Thus e = [a, a]. Similarly, if [a, b][m,n] = [m, n] we have that a = b.
It remains to show that the identity is unique. Suppose that
la, b][c, c] = [a, b][d,d] = [a, b]
for some identities [c, c], [d,d] € G. Then by definition [xa, yc] = [%a, yd] where xb = yc and xb = yd for
some x,y, X,y € C. Hence uxa = vxa and uya = vyd. By definition of ~ and Lemma 2.9,
[c.c] = [ye,yc] = [yd, yd] = [d, d]

As required. Similarly, [c, c][a, b] = [d, d][a, a] = [a, b] implies that [c, c] = [d, d].

Suppose that [a, b] € G. Then as d(a)a = d(a)a we have
[a,a][a, b] = [d(a)a,d(a)b] = [a, b].
Similarly, d(b)b = d(b)b whence
[a, b][b, b] = [d(a)a,d(a)b] = [a, b].
Hence d([a, b]) = [a, a] and r([a, b]) = [b, b].
By the above argument and Lemma 2.8, the following lemma is clear.

Lemma 2.11. G is a category.

If [a, b] € G, then it is clear that [b,a] € G, as d(a)b = d(a)b we have
[a, b][b, a] = [d(a)a,d(a)a] = [a,a] = d([a, b]).
Similarly, [b, a][a, b] = [b, b] = r([a, b]). That is, [b, a] is the inverse of [a, b] in G. Thus we have
Lemma 2.12. G is a groupoid.
Lemma 2.13. The mapping 6: C - G defined by af = [d(a), a] is an embedding of C in G.
Proof. It is clear that 8 is well-defined. To show that 6 is one-to-one, let [d(a), a] = [d(D), b] so thatua = vb

and ud(a) = vd(b) for some u, v € C. Hence a = b.
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Let a, b € C such that ab is defined. We have
abbb = [d(a), a][d(b), b]

= [ud(a), vb] where ua = vd(b) for some u,v € C
= [ud(a), uab] asua =vd(b) =v

= [d(a), ab] by Lemma 2.9

= [d(ab), ab] asd(a) = d(ab)

= (ab)6.

Thus 6 is a homomorphism.

From (i) we know that C, = G,. Hence C is a left order in G. This completes the proof of Theorem 2.5.

Corollary 2.14. A subcategory C is a left order in a groupoid G if and only if C is right reversible and
cancellative.

Proof. If C is a left order in a groupoid G, then by Lemma 2.3, C is right reversible and cancellative.
Conversely, if C is right reversible and cancellative, then by (ii) in Theorem 2.5, C is a left order in a groupoid

G.
IV. UNIQUENESS

In this section we show that a category C has, up to isomomorphism, at most one groupoid of left I-quotients.
Theorem 3.1. Let C be a left order in groupoid G. If ¢ is an embedding of C to a groupoid T, then there is a
unique embedding ¥: G — T such that Y| = ¢@.

Proof. Define : G — T by
(a™'b)yp = (ap)~*(by)
a, b, c € C. Suppose that
a'b=cd
so that xa = yc and xb = yd for some x,y € C, by Lemma 2.4. Hence
xpap = ypcp and xpbg = ypdp
in C¢. Thus
apcp™ = xp~'yp = bodp™!
so that
ap~tbhe = cp~lde.
It follows that ¢ is well-defined and 1-1. It remains for us to show that y is a homomorphism. Let
a='b,c~'d € G where a, b, c,d € C. Now,
(a™'bc™'d)yp = ((xa) ™ (xa))y
= (xa)p~ (yd)g
= ap~xp " ypdy,
where xb = yc for some x,y € C. We have that xpbg = y@ce and so bpcgp™ = xp~ty@. Hence
(a™*bc™'d)Y = ap~ xp ' ypde
= ap~ by co~dy
= (a™'b)p(c ™ d).

59



MAYFEB Journal of Mathematics - ISSN 2371-6193
Vol 2 (2017) - Pages 48-60

Finally, to see that i is unique, suppose that 8: G — T is an embedding with 8|¢ = ¢. Then for an element

a~1b of G, we have
(@™ 'b)0 = (a™'0)(b0) = (a®) ™' (b8) = (ap)~*(be) = (a~ ‘b)Y
so that 8 = .
The following corollary is straightforward.
Corollary 3.2. If a category C is a left order in groupoids G and P, then G and P are isomorphic by an

isomorphism which restricts to the identity map on C.

ACKNOWLEDGMENT

The author would like to thank the anonymous referees for their useful comments and suggestions which have
definitely improved the final version of this paper.

REFERENCES

[1] A. Cegarra, N. Ghroda and M. Petrich, “New orders in primitive inverse semigroups”, Acta Sci. Math., 81 (2015), 111-131.
[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Mathematical Surveys 7, American Math. Soc. (1961).
[3]J. B. Fountain and M. Petrich, “Completely 0-simple semigroups of quotients”, Journal of Algebra 101 (1986), 365-402.
[4] T. Fritz, “Categories of Fractions Revisited”, Morfsmos, 15 (2) (2011), 19-38.
[5] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35.
Springer-Verlag New York, Inc., New York (1967).
[6] N. Ghroda and V. Gould, “semigroups of Inverse quotients”, Per. Math. Hung., 65 (2012), 45-73.
[7]1 P.J. Higgins, Notes on categories and groupoids, Van Nostrand Reinhold Math. Stud. 32 (1971), Reprinted Electronically at
www.tac.mta.co/tac/reprints/articles/7/7tr7.pdf.
[8] G. Ivan, “Special morphisms of groupoids”, Novi Sad J. Math. 13, (2) (2002), 23-36.
[9] H. James and M. V. Lawson, “An Application of Groupoid of Fractions To Inverse Semigroups”, Periodica Mathematica Hungarica
38 (1-2) (1999), 43-54.
[10] A. V. Jategaonkar, Localization in Noetherian rings, volume 98 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge,(1986).
[11] N. Kehayopulu and M. Tsingelis, “Green’s relations in ordered groupois in terms of fuzzy subsets”, Soochow Journal of
Mathematics, 33 (3), (2007), 383-397.
[12] M. V. Lawson, Inverse semigroups: the theory of partaial symmetriies, World Scientific, Singapore, 1998.

60





