On some Pell difference sequences

Paula Maria Machado Cruz Catarino

Abstract


In this paper the concept of difference relation is applied to the sequences of k-Pell, k-Pell-Lucas and Modified k-Pell numbers. We will obtain some algebraic properties of these sequences and correspondent Binet's formulae as well as generating functions are established.

Full Text:

PDF

References


Aires A.P., Catarino P., Campos H., Borges A. and Vasco P., s-Generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples, Int. J. Math. Anal., 8(36), 1757--1766 (2014).

Bolat C. and K"{o}se H., On the Properties of k-Fibonacci Numbers, Int. J. Contemp. Math. Sci., 22(5), 1097--1105 (2010).

Catarino P., On some identities and generating functions for k-Pell numbers, Int. J. Math. Anal. (Ruse), 7(38), 1877--1884 (2013).

Catarino P., A note involving two-by-two matrices of the k-Pell and k-Pell-Lucas sequences, Int. Math. Forum, 8(32), 1561--1568 (2013).

Catarino P., On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sci., 9(1), 37--42 (2014).

Catarino P. and Vasco P., On Some Identities and Generating Functions for k-Pell-Lucas Sequence, Appl. Math. Sci., 7(98), 4867--4873 (2013).

Catarino P. and Vasco P., Modified k-Pell Sequence: Some Identities and Ordinary Generating Function, Appl. Math. Sci., 7(121), 6031--6037 (2013).

Catarino P., Vasco P., Borges A., Campos H. and Aires A.P., Sums, Products and identities involving k-Fibonacci and k-Lucas sequences, JP J. Algebra Number Theory Appl., 32(1), 63--77 (2014).

Falc"{o}n S., The k-Fibonacci difference sequences, Chaos, Solitons Fractals, 87, 153--157 (2016).

Falc"{o}n S.and Plaza A., On the Fibonacci k-numbers, Chaos, Solitons Fractals, 32(5), 1615--1624 (2007).

Gupta V.K., Panwar Y.K. and Sikhwal O., Generalized Fibonacci Sequences, Theoretical Mathematics and Applications, 2(2), 115--124 (2012).

Hoggatt V.E., Fibonacci and Lucas Numbers, 92pp. Fibonacci Association, University of Santa Clara, Santa Clara: Houghton Mifflin Company, (1969).

Koshy T., Fibonacci, Lucas, and Pell numbers, and Pascal's triangle, Mathematical Spectrum, 43(3), 125--132 (2011).

Vasco P.and Catarino P., Sums and products involving terms of k-Pell, k-Pell-Lucas and Modified k-Pell sequences, JP J. Algebra, Number Theory Appl., 32(2), 87--98 (2014).

Vorobiev N.N., Fibonacci Numbers, 176pp. Translated from the Russian by M. Martin. Birkh"{a}user, Basel, Boston, Berlin, (2002).

$https://en.wikipedia.org/wiki/Recurrence_relation$


Refbacks

  • There are currently no refbacks.


MAYFEB Journal of Mathematics 
Toronto, Ontario, Canada
MAYFEB TECHNOLOGY DEVELOPMENT
ISSN 2371-6193