On a Conjecture of Legendre

Reza Farhadian

Abstract



Full Text:

PDF

References


L. Debnath, K. Basu, Some Analytical and Computational Aspects of Prime Numbers, Prime Number Theorems and Distribution of Primes with Applications, Int. J. Appl. Comput. Math., 1 (2015), pp. 3–32.

P. Dusart, Estimate of some functions over primes without R.H, 2010, available at arXiv:1002.0442v1.

P. Erdős, Some Remarks and Problems in Number Theory Related to the Work of Euler, Math. Mag., 56 (1983), pp. 292–298.

L. J. Goldstein, A History of the Prime Number Theorem, Amer. Math. Monthly., 80 (1973), pp. 599–615.

A. M. Legendre, Essai sur la Théorie de Nombres, 1 st ed., Paris: Duprat, 1798.

A. M. Legendre, Essai sur la Théorie de Nombres, 2 nd ed., Paris: Courcier, 1808.

J. Pintz, Landau’s problem’s on primes, J. Théor. Nombres Bordx., 21 (2009), pp. 357–404.

J. Pintz, On Legendre’s prime number formula, Amer. Math. Monthly., 87 (1980), pp. 733–735.

J. B. Rosser, The nth prime is greater than nlnn, Proc. Lond. Math. Soc., 45 (1938), pp. 21–44.

J. B. Rosser, L. Schoenfeld, Approximates Formulas for Some Functions of Prime Numbers, Illinois J. Math., 6 (1962), pp. 64–94.

A. Selberg, An Elementary Proof of the Prime-Number Theorem, Annals of Math., 50 (1949), pp. 305–313.


Refbacks

  • There are currently no refbacks.


MAYFEB Journal of Mathematics 
Toronto, Ontario, Canada
MAYFEB TECHNOLOGY DEVELOPMENT
ISSN 2371-6193