The Fischer-Cliford Matrices and Character Table of the Primitive Group 2^6:SU(4,2)

Rauhi Ibrahim Elkhatib

Abstract


The purpose of this paper is constructing the Fischer-Clifford matrices and the character tables for the group .


Full Text:

PDF

References


A. H. Clifford, “Representations induced in an invariant subgroup” Ann. of Math. 38 , 1937, pp. 533 - 550.

A. L. Prins,”The Fischer-Clifford Matrices And Character Table of The maximal Subgroup 2^9:(L_3 (4):S_3 ) Of U_6 (2):S_3 “, Bull. Iranian Math. Soc., Vol. 42, No. 5 (2016), pp. 1179-1195.

A. L. Prins and R. L. Fray, “The Fischer-Clifford Matrices Of The Inertia Group 2^7:O_6^- (2) Of A Maximal Subgroup 2^7:〖Sp〗_6 (2) In 〖Sp〗_8 (2)”, International Journal of Group Theory, Vol.2 No.3 (2013), pp. 19-38.

A. L. Prins and R. L. Fray, “The Fischer-Clifford Matrices Of An Extension Group Of The form 2^7:(2^5:S_6 )”, International Journal of Group Theory, Vol. 3 No.2 (2014), pp. 21-39.

B. Fischer, “Clifford matrices” Representation theory of finite groups and finite-dimensional Lie algebras, 1991, pp. 1 - 16.

B. M. Basheer, “Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic Unitary and Thompson Groups” PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012.

B. M. Basheer, ‘’On A Group of The Form 2^14:Sp(6,2)”, Quaestiones Mathematicae (2015), pp 1-13.

F. Ali, “Fischer-Clifford Theory for Split and Non-Split Group Extensions” PhD Thesis, University of Natal, Pietermaritzburg, 2001.

F. Ali, ”The Fischer-Clifford Matrices And Chracter Table Of The Splite Extension 2^6:S_8”, Hacettepe Journal of Mathematics and Statistics, Vol. 43 No.2 (2014), pp. 153-171.

J. Moori, “On the Groups G+ and G of the form 210:M22 and 210:M22”, PhD Thesis, University of Birmingham, 1975.

J. Moori and T. Seretlo,”On An Inertia Factor Group Of 2^8:O_8^+ (2)”, Italian Journal of Pure and Applied Mathematics No. 33 (2014), pp. 241-254.

J. Moori and T. Seretlo,”On a Maximal Subgroup Of O_10^+ (2)”, Southeast Asian Bulletin of Mathematics Vol. 39 (2015), pp. 249-263.

Magma program, version 2.20-9. Available: http://magma.maths.usyd.edu.au/magma/.

Maxima, A Computer Algebra System. Version 5.18.1; 2009. Available: http://maxima.sourceforge.net.

P. X. Gallagher,” Group characters and normal Hall subgroups”, Nagoya Math. J. 21 (1962), pp. 223 - 230.

R. A. Wilson et al.,” Atlas of finite group representations”. Available: http://brauer.maths.qmul.ac.uk/Atlas/v3.

R.L. Fray and A.L. Prins,”A Group Of The Form 2^7:S_8 As An Inertia Group Of The Affine Subgroup 2^7:〖Sp〗_6 (2) Of 〖Sp〗_8 (2)”, Internaional Journal Of Modern Mathematical Scince, Vol.13 No.3 (2015), pp.330-351.

T. T. Seretlo, “Fischer-Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups O+8 (2), HS and Ly”, PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012.

The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.6; 2016. Available: http://www.gap-system.org.

Z. E. Mpono, “Fischer Clifford Theory and Character Tables of Group Extensions”, PhD Thesis, University of Natal, Pietermaritzburg, 1998.


Refbacks

  • There are currently no refbacks.


MAYFEB Journal of Mathematics 
Toronto, Ontario, Canada
MAYFEB TECHNOLOGY DEVELOPMENT
ISSN 2371-6193