### Sum of Domination and Independence Numbers of Cubic Bipartite Graphs

#### Abstract

#### Full Text:

PDF#### References

B. Zelinka, “Some remarks on domination in cubic graphs”, Discrete Mathematics, 158, 1996, 249-255.

C. Payan and N. H. Xuong, “Domination-balanced graphs”, J. Graph Theory 6, 1982, 23-32.

E. J. Cockayne and S. T. Hedetniemi, “Towards a theory of domination in graphs”, Networks, 7, 1977, 247-261.

F. S. Roberts, “Graph theory and its application to problems of society”, SIAM, Philadelphia, 1978, 57-64.

J.F. Fink, M.S. Jacobson, L. Kinch and J. Roberts, “On graphs having domination number half their order”, Period. Math. Hungar, 16, 1985, 287–293.

M. Blidia, M. Chellali and O. Favaron, “Independence and 2-domination in trees”, Australas. J. Combin. 33, 2005, 317–327.

N. Murugesan and Deepa S. Nair “The Domination and Independence of Some Cubic Bipartite Graphs” Int. J. Contemp. Math. Sciences, Vol.6, no. 13, 2011, pp. 611 – 618.

Narsingh Deo, “Graph Theory with Applications to Engineering and Comp.Science”, Prentice Hall, Inc., USA ,1974.

O. Ore, “Theory of Graphs”, Amer. Math. Soc. Colloq. Publ. 38, (1962).

T.W Haynes, S.T. Hedetniemi S. T. and P. J. Slater. “Fundamentals of domination in Graphs”, Marcel Dekker, New York, 1998.

T. W. Haynes, S. T. Hedetniemi, P. J. Slater, “Domination in graphs, Advanced Topics”, Marcel Dekker, New York, 1998.

Vasumathi, N., and Vangipuram, S., Existence of a graph with a given domination parameter, Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications, University of Madras, Madras, 187-195 (1995).

Vijaya Saradhi and Vangipuram, Irregular graphs‟. Graph Theory Notes of New York, Vol. 41, 33-36, (2001).

### Refbacks

- There are currently no refbacks.

**MAYFEB Journal of Mathematics**

**Toronto, Ontario, Canada**

**MAYFEB TECHNOLOGY DEVELOPMENT**

**ISSN**

**2371-6193**