Enumeration of Extended Irreducible Binary Goppa Codes of Degree 7 and length 65.

Augustine Innocent Musukwa


In this paper we count extended irreducible binary Goppa codes of length
65 and degree 7. We do this by considering the tools used to count non extended version.

Full Text:



Loidreau, P., and Sendrier, N., "Weak keys in the McEliece public key cryptosystem," IEEE Transactions on Information Theory, pp. 1207-1211, available at http://perso.univrennes1.fr/pierre.loidreau/articles/ieee-it/ClesFaibles.pdf, (2001).


Overbeck, R.: "Structural attacks for public key cryptosystems based on

Gabidulin codes." Journal of Cryptology 21(2), 280–301 (2008).


Wieschebrink, C.: "Cryptanalysis of the Niederreiter public key scheme

based on GRS subcodes". In: Sendrier, N. (ed.) Post-Quantum Cryptography (PQCrypto 2010), Lecture Notes in Computer Science 6061, 61–72. Springer (2010).


Baldi, M., "Enhanced public key security for the McEliece cryptosystem," J Cryptol (2016) 29:doi:10.1007/s00145-014-9187-8


Lidl, R., and Niederreiter, H., "Finite Fields." Cambridge University Press, 1983.


Magamba K., and Ryan J.A., "Counting Irreducible Polynomials of degree r over $F_{q^n}$ and Generating Goppa Codes using the Lattice of Subfields of $F_{q^{nr}}$," Journal of Discrete Mathematics, (2014).


J.A. Ryan, 2004, "Irreducible Goppa Codes", PhD Thesis, University College Cork.


C.L. Chen, "Equivalent irreducible Goppa codes," IEEE Trans. Inform. Theory,relax -24,766-769, 1978.

Ryan J.A., "Counting Extended Irreducible Goppa Codes", Discrete Mathematics, (2014).


  • There are currently no refbacks.

MAYFEB Journal of Mathematics 
Toronto, Ontario, Canada
ISSN 2371-6193