PROPERTIES OF K- FIBONACCI SEQUENCE USING MATRIX METHOD

Ashok D Godase, M D Dhakne

Abstract


The intention of this paper is to obtain some identities of a k-Fibonacci sequence. So in the present paper
first and foremost we defined matrices Mk(n;m), Tk(n), Sk(n;m), An, E, Yn,Wn, Gn and Hn for k-Fibonacci and
k- Lucas sequences and at hindmost by using matrix methods some identities are deduced for the k-Fibonacci
sequence.


Full Text:

PDF

References


K. Atanassov, L. Atanassov, D. Sasselov, A New Perspective to the Generalization of the Fibonacci Sequence, The Fibonacci Quarterly 23

(1)(1985), 21-28.

K. T. Atanassov, Remark on a New Direction of Generalized Fibonacci Sequence, The Fibonacci Quarterly 33 (3)(1995) 249-250.

A. D. Godase, M. B. Dhakne, On the properties of k Fibonacci and k Lucas numbers, International Journal of Advances in Applied Mathematics

and Mechanics, 02 (2014), 100 - 106.

A. D. Godase, M. B. Dhakne, Fundamental Properties of Multiplicative Coupled Fibonacci Sequences of Fourth Order Under Two Specific

Schemes, International Journal of Mathematical Archive , 04, No. 6 (2013), 74 - 81.

A. D. Godase, M. B. Dhakne, Recurrent Formulas of The Generalized Fibonacci Sequences of Fifth Order, ”International Journal of Mathematical

Archive” , 04, No. 6 (2013), 61 - 67.

A. D. Godase, M. B. Dhakne, Summation Identities for k Fibonacci and k Lucas Numbers using Matrix Methods, International Journal of

Mathematics and Scientific Computing , 05, No. 2 (2015), 75 - 78.

A. D. Godase, M. B. Dhakne, Determinantal Identities for k Lucas Sequence, Journal of New Theory , 12 (2015), 01 - 07.

A. D. Godase, M. B. Dhakne, On the properties of Generalized Multiplicative coupled Fibonacci sequence of rth order, International Journal

of Advances in Applied Mathematics and Mechanics, 02 (03) (2015), 252 - 257.

M. Singh ,O.Shikhwal, S. Jain, Coupled Fibonacci Sequences of Fifth order and Some Identities, International Journal in Mathematical Analysis

(25)(2010), 1247-1254.

A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly, 03, No. 3 (1965), 61 - 76.

S. Falcon, A. Plaza, On the k Fibonacci numbers, Chaos, Solitons and Fractals, 05, No. 32 (2007), 1615 - 1624.

S. Falcon, A. Plaza, The k Fibonacci sequence and the Pascal 2 triangle, Chaos, Solitons and Fractals, 33, No. 1 (2007), 38 - 49.

S. Falcon, A. Plaza, The k Fibonacci hyperbolic functions, Chaos, Solitons and Fractals Vol. 38, No.2 (2008), 409 - 20.

P. Filipponi, A. F. Horadam, A Matrix Approach to Certain Identities, The Fibonacci Quarterly, 26, No. 2 (1988), 115 - 126.

H. W. Gould, A History of the Fibonacci q - Matrix and a Higher - Dimensional Problem, The Fibonacci Quarterly , 19, No. 3 (1981), 250 -

A. F. Horadam, Jacobstal Representation of Polynomials, The Fibonacci Quarterly, 35, No. 2 (1997) 137 - 148.

T. Koshy, Fibonacci and Lucas numbers with applications, Wiley - Intersection Publication (2001).

N. J. Sloane, The on-line encyclopedia of integer sequences 2006.

G. Strang, Introduction to Linear Algebra, Wellesley - Cambridge:Wellesley, M. A. Publication (2003).

S. Vajda, Fibonacci and Lucas numbers and the Golden Section: Theory and applications, Chichester: Ellis Horwood, (1989).

M. E. Waddill , Matrices and Generalized Fibonacci Sequences, The Fibonacci Quarterly, 55, No. 12 (1974) 381 - 386.


Refbacks

  • There are currently no refbacks.


MAYFEB Journal of Mathematics 
Toronto, Ontario, Canada
MAYFEB TECHNOLOGY DEVELOPMENT
ISSN 2371-6193