The Enzymatic Activities, Characterization, Properties and Applications of Cellulase

K. Odelade, O. Oladeji, S. Aremu, M. Adisa


Cellulosic waste may be converted to products of commercial interest such as glucose, soluble sugars, enzymes, alcohol, and single cell proteins and the key element in the saccharification process of lignocellulosics to these industrially useful products relies on participation of cellulolytic organisms and their cellulase enzymes. The production of cellulase enzyme is a major factor in the hydrolysis of cellulosic materials but it is usually produced in small quantities by the parent organisms. The spectacular successful examples of strain improvement in industry are mostly attributed to the extensive application of mutation and selection. Such improved strains can reduce the cost of the processes with increased productivity and may also possess some specialized desirable characteristics. Hence, there is need to study the production and application of cellulase to man and his environment.

Full Text:



. Ahmed, S., Bashir, A., Saleem, H. (2009). Production and purification of cellulose degrading enzymes from a filamentous fungus Trichoderma harzianum. Pakistan Journal of Botany, 41, 1411- 1419.

. Facchini, F. D., Vici, A. C., Reis, V. R., Jorge, J. A., Terenzi, H. F., Reis, R. A. Polizeli Mde, L. (2011). Production of fibrolytic enzymes by Aspergillus japonicus C03 using agro-industrial residues with potential application as additives in animal feed. Bioprocess Biosyst. Eng. 34: 347-55.

. Niranjane, A. P., Madhou, P. Stevenson, T. W. (2007). The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantean. Enzyme Microbial. Technol. 40: 1464-1468.

. Rani, D. S. and Nand, K. (2000). Production of thermostable cellulase-free xylanase by Clostridium absonum. Process Biochem., 36: 355- 362.

. Persson, I., Tjerneld, F. and Hahn-Hägerdahl, B. (1991). Fungal cellulolytic enzyme production part of: Persson, I. Production and utilization of cellulolytic enzymes in aqueous two-phase systems. Thesis University of Lund, Sweden.

. Duff, S. J. B. and Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55: 1-33.

. Silva, L. A. D. (2008). Produção e caracterização de enzimascelulásicaspor Aspergillus phoenicis. Master's Thesis, Universidade Federal do Rio Grande do Sul, pp 153-156.

. Tao, Y. M., Zhu, X. Z., Huang, J. Z., Ma, S. J., Wu, X. B., Long, M. N. Chen, Q. X. (2010). Purification and properties of endoglucanase from a sugar cane bagasse hydrolyzing strain, Aspergillus glaucus XC9. J. Agric. Food Chem. 58(10): 6126-6130.

. Naika, G. S. Tiku, P. K. (2010). Characterization of functional intermediates of endoglucanase from Aspergillus aculeatus during urea and guanidine hydrochloride unfolding. Carbohydr. Res. 345(11): 1627-31.

. Irshad, M., Ahmed, S., Latif, F. Rajoka, M. I. (2008). Regulation of Endo- β-Dxylanase and β Xylosidase synthesis in Humicola lanuginosa. J. Chem. Soc. Pak. 30: 913-918.

. Abo-State, M. A. M., Hammad, A. I., Swelim, M. and Gannam, R. B. (2010). Enhanced Production of Cellulase(S) By Aspergillus spp. Isolated From Agriculture Wastes by Solid State Fermentation. American-Eurasian J. Agric. & Environ. Sci. 8(4): 402-410.

. Gao, J. H., Weng, D., Zhu, G., Yuan, F., Guan, and Xi, Y. (2007). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid- state cultivation of corn stover. Bioresource Technol., 99: 7623-7629.

. Pandey, A., Soccol, C.R., Nigam, P., Brand, D., Mohan, R. and Roussoss, S. (2000). Biotechnology potential of agro-industrial residues, part II. Cassava bagasse.Bioresource Technology 78:81-87.

. Deunas, R., Tengerdy, R. P. and Gutierrez, M. (1995). Cellulase production by mixed fungi in solid state fermentation of bagasse. World J. Microbiol. Biotechnol., 11: 333-337.

. Zhou, J., Wang, Y. H., Chu, J., Zhuang, Y. P., Zhang, S. L. Yin, P. (2008). Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour. Technol. 99: 6826-6833.

. Papagianni, M. (2006). Fungal morphology and metabolite production in submerged mycelia processes. Biotechnology Advances , pp. 606-615.

. Perez-Guerra, N., Torrado-Agrasar, A., Lopez Macias, C. and Pastrana, L. (2003). “Main Characteristics and Applications of Solid Substrate Fermentation.” Electronic Journal of environmental, Agricultural & Food Chemistry. 2 (3): 343-350.

. Pandey, A., Maciel, G. M., Vandenberghe, L. P., Windson, C., Haminiuk, I., Fendrich, R. C., Bianca, D. E., Brandalize, T. Q. and Soccol, S. R. (1999). Xylanase production by Aspergillus niger 1pb 326 in solid state fermentation using statistical experimental designs. Food Technol. Biotechnol., 46: 183-189.

. Gao, J. (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid state cultivation of corn stover. Bioresource Technology, 99, 7623-7629. doi:10.1016/j.biortech.2008.02.005

. Carvalho, W. R. (2004). Caracterização bioquímica da endoxilanase recombinante (HXYN2r) do fungo termofílico Humicola grisea var. thermoidea e sua aplicação na sacarificação de resíduos agrícolas. Doctoral thesis, Universidade Federal de Goiás, vdpp. 625-827.

. Bon, E. P. S., Ferrara, M. A., Corvo, M. L., Vermelho, A. B., Paiva, C. L. A. M., De Alencastro, R. B. and Coelho, R. R. R. (2008). Enzimasembiotecnologia: Produção, aplicações e Mercado. Rio de Janeiro. Pp 120-129.

. Bayer, E. A. and Lamed, R. (1992). The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource. Biodegradation. pp. 171-188.

. Pandey, A. (2003). “Solid-state fermentation.” Biochemical Engineering Journal. 13: 81-84.

. Hölker U, Höfer M, and Lenz J. (2004): “Biotechnological advantages of laboratory-scale solid-state fermentation with fungi.” Applied Microbiology and Biotechnology. 64(2):175-186.

. Coelho, M. A. Z., Leite, S. G. F., Rosa, M. F. and Furtado, A. A. L. (2001). Aproveitamento de resíduosagroindustriais: produção de enzimas a partir da casca de coco verde. Boletim CEPPA. pp 189-259

. Alberton, L. R. (2004). Produção de xilanaseemresíduosagroindustriaispor Streptomyces viridosporus t7a e aplicação do extratobrutoemveterinária. pp 375-384.

. Filho, U. C. (2006). Cinéticaenzimática e uso e produção de enzimas; Universidade Federal de Uberlândia, pp 170-174.

. Lynd, L. R., Weimer, P. J., Zyl, W. H. V. Pretorius, I. S. (2002). Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews, pp. 506-577.

. Singh and Hayashi, K. (1995). Microbial cellulases: Protein architeture, molecular properties, and biosynthesis. Advances in Applied Microbiology, pp. 1-44.

. Lima, U. A., Schimdell, W., Aquarone, E. and Borzani, W. (2001). Biotecnologia industrial: Processos Fermentativos e Enzimáticos. (São Paulo, Edgar Blüncher), pp. 627-726

. Coral, G., Arikan, B., Unaldi, M. N. Guvenmes, H. (2002). Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type Strain. Turk. J. Biol, 26: 209-213.

. Howard RL, Abotsi E, JansenVREL, Howard S. (2003): “Lignocellulose Biotechnology: Issue of Bioconversion and Enzsyme production.” African Journal of Biotechnology. 2: 602-619.

. Hölker U, Höfer M, and Lenz J. (2004): “Biotechnological advantages of laboratory-scale solid-state fermentation with fungi.” Applied Microbiology and Biotechnology. 64(2):175-186.

. Carere, C.R., Sparling, R., Cicek, N., Levin, D.B. (2008). Third generation Biofuels via direct cellulose fermentation.Int. J.Mol. Sci9: 1342-1360.

. Saleem, F., Ahmed, S. Jamil, A. (2008). Isolation of a xylan degrading gene from genomic DNA library of a thermophilic fungus Chaetomium thermophile ATCC 28076. Pak. J. Bot. 40: 1225 1230.

. Zhang, Y. H. P., Himmel, M. E. and Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481.

. Escobar, J. C., Lora, E. S., Venturini, O. J., Yanez, E. F., Almazan, O. (2009). Biofuels: environment, technology and food security. Renew. Sustain. Energy Rev. 13: 1275- 1287

. Ghose, T. K. (1987). Measurement of cellulase activities. Pure & Applied Chemistry, pp. 257-268.

. Bhat, M. K. (2000). Cellulase and related enzymes in biotechnology. Biotechnology Advances. pp. 355-383.


  • There are currently no refbacks.

MAYFEB Journal of Environmental Science
Toronto, Ontario, Canada
ISSN 2371-7092