Qualitative approach of binding chain (CH2)n (n=2 to 3) role on the physicochemical character in the intramolecular reaction: case of triene amide molecule

Abdo Benallou, Hocine Garmes, Habib El Alaoui El Abdallaoui

Abstract


In this paper, we have study the binding chain role and the physicochemical variations between diene and dienophile fragments through the linked (intra-molecule) and isolated fragments in order to facilitate and better understanding the intramolecular cycloaddition Diels-Alder reaction mechanism, and was evaluated by using the nucleophilicity and electrophilicity indices calculated by DFT method in conjunction with B3LYP hybrid and 6-31G(d,p) basis set level. The results found elucidate that the binding chain (CH2)n (n=2 to 3) has a negligible contribution to the physicochemical character of the fragments and that his principal role is the perturbation between fragments (µdiene≠µdienophile) in the intra-molecule. Therefore, the qualitative studies we permit to conclude that the diene and dienophile fragments are fully preserved their characters in the linked fragment (intra-molecule) compared than that in the isolated fragment (IF) as well the nucleophilicity index is Ndiene(IF)≈Nintra-molecule although the electrophilicity index ωdienophile(IF)≈ωintra-molecule.

Full Text:

PDF

References


O. Hideaki, “Nature’s Strategy for Catalyzing Diels-Alder Reaction”, Cell Chem Biol, vol. 23, pp. 429-430, Apr. 2016. http://dx.doi.org/10.1016/j.chembiol.2016.04.002

S. W. Weinreb, B.M. Trost and I. Fleming, “Comprehensive organic synthesis”, Eds., vol. 5, Pergamon Press, Oxford, pp. 401-449, 1991.

L. Stella, H. Abraham, J. Feneu-Dupont, B. Tinant and J.P. Declercq, “Asymmetric aza-diels-alder reaction using the chiral 1-phenyl ethyl imine of methyl glyoxylate”, Tetrahedron Lett, vol. 31, no. 18, pp. 2603-2606. 1990. http://www.sciencedirect.com/science/article/pii/004040399080136A

Z. Nicolas, Y. Basit and B. K. Christopher, “Diels–Alder reactions for carbon material synthesis and surface functionalization”, Polym Chem, vol. 4, pp. 4072-4086, Feb. 2013. http://pubs.rsc.org/en/content/articlelanding/2013/py/c3py00232b

C.M. Ormachea, P.M.E. Mancini, M.N. Kneeteman and L.R. Domingo, “Understanding the participation of 3-nitropyridine in polar Diels–Alder reactions. A DFT study”, Comp Theor Chem. vol. 1072, pp. 37-42, Nov. 2015. http://www.sciencedirect.com/science/article/pii/S2210271X1500359X

A. Wasserman A, “Diels–Alder reactions, Wassermann”, Elsevier Publ, Comp., New York, 1965.

J.S. Murray, D. Yepes, P. Jaque and P. Politzer, “Insights into some Diels–Alder cycloadditions via the electrostatic potential and the reaction force constant”, Comp Theor Chem, vol. 1053, pp. 270-280, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S2210271X1400365X

R.H. Thomas, B. Beeraiah, N. Dawen, H.W. Patrick and P.W. Brian, “The hexadehydro-Diels–Alder reaction”, Nature, vol. 490, pp. 208-212, Oct. 2012. doi:10.1038/nature11518

Ji. Radomir, K. Magdalena, S. Valentin and B. Andrzej, “Experimental and theoretical studies of Diels–Alder reaction between methyl (Z)-2-nitro-3-(4-nitrophenyl)-2-propenoate and cyclopentadiene”, Monatsh Chem, vol. 144, pp. 327-335, Mar. 2013. doi: 10.1007/s00706-012-0885-3

P. Ravinder and V. Subramanian, “Density functional theory studies on the Diels–Alder reaction of [3] dendralene with C60: an attractive approach for functionalization of fullerene”, Theor Chem Acc, vol. 131, pp. 1128, Apr. 2012. http://link.springer.com/article/10.1007/s00214-012-1128-8

L.R. Domingo, “A Theoretical Study of the Molecular Mechanism of the Reaction between N,N-Dimethylmethyleneammonium Cation and Cyclopentadiene”, J Org Chem, vol. 66, pp. 3211-3214, Apr. 2001. http://pubs.acs.org/doi/abs/10.1021/jo001332p

C. Hedberg, P. Pinho, P. Roth and P.G. Andersson, “Diels−Alder Reaction of Heterocyclic Imine Dienophiles”, J Org Chem, vol. 65, no. 9, pp. 2810-2812, Apr. 2000. http://pubs.acs.org/doi/abs/10.1021/jo9916683

L.R. Domingo, M. Oliva and J. Andres, “A Theoretical Study of the Reaction between Cyclopentadiene and Protonated Imine Derivatives: A Shift from a Concerted to a Stepwise Molecular Mechanism”, J Org Chem, vol. 66, no. 18, pp. 6151-6157, Aug. 2001. http://pubs.acs.org/doi/abs/10.1021/jo0015422

J. Quenneville and T.C. Germann, “A quantum chemistry study of Diels–Alder dimerizations in benzene and anthracene”, J Chem Phys, vol. 131, pp. 24313-24324, Jun. 2009. http://aip.scitation.org/doi/full/10.1063/1.3159542

J. Soto-Delgado, L.R. Domingo and R. Contreras, “Quantitative characterization of group electrophilicity and nucleophilicity for intramolecular Diels–Alder reactions”, Org Biomol Chem, vol. 8, pp. 3678-3683, May. 2010. http://pubs.rsc.org/en/content/articlelanding/2010/ob/c004628k

M. Juhl and D. Tanner, “Recent applications of intramolecular Diels–Alder reactions to natural product synthesis”, Chem Soc Rev, vol. 38, pp. 2983-2992, Jul. 2009. http://pubs.rsc.org/en/content/articlelanding/2009/cs/b816703f

K. Takao, R. Munakata and K. Tadano, “Recent Advances in Natural Product Synthesis by Using Intramolecular Diels−Alder Reactions”, Chem Rev, vol. 105, no. 12, pp. 4779-4807, Oct. 2005. http://pubs.acs.org/doi/abs/10.1021/cr040632u

A. Benallou, H.E. El Abdallaoui and H. Garmes, “A conceptual DFT approach towards analysing feasibility of the intramolecular cycloaddition Diels-Alder reaction of triene amide in Lewis acid catalyst”, J Chem Sci, vol. 128, no. 9, pp. 1489–1496, Aug. 2016. http://link.springer.com/article/10.1007/s12039-016-1138-5

A. Benallou, H. Garmes and H.E. El Abdallaoui, “Effect of hydrogen bonding on the intramolecular cycloaddition Diels-Alder reaction of triene-amide in an aqueous solution (case of a single molecule of water)”, Tetrahedron, vol. 72, pp. 76-83, Oct. 2016. http://www.sciencedirect.com/science/article/pii/S0040402015301782

A. Tachibana, “Chemical potential inequality principle”, Theor Chem Acc, vol. 102, no. 1, pp. 188-195, Jun. 1999. http://link.springer.com/article/10.1007/s002140050490

A. Benallou, H. Garmes and H.E. El Abdallaoui, “GIAO Calculations of Chemical Shifts of NMR Spectra of 1H and 13C of the Hexahydroindoles Products”, Mor J Chem, vol. 3, no. 2, pp. 238-248, Feb. 2015. http://revues.imist.ma/?journal=morjchem&page=article&op=view&path%5B%5D=2513

A.D. Becke, “Density functional thermochemistry. III. The role of exact exchange”, J Chem Phys, vol. 98, no. 7, pp. 1372-1377, Dec. 1993. http://aip.scitation.org/doi/abs/10.1063/1.464913

C. Lee, W. Yang and R.G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys Rev B, vol. 37, pp. 785-789, Jan. 1988. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.37.785

P.R. Seidl, J.W.M. Carniero, J.G.R. Tostes, J.F. Dias, P.S.S. Pinto, V.E.U. Costa and C.A. Taft, “Conformational effects on NMR chemical shifts of half-cage alcohols calculated by GIAO-DFT”, J Mol Struct (Theochem), vol. 579, pp. 101, Mar. 2002. http://www.sciencedirect.com/science/article/pii/S0166128001007205

R.G. Parr, L.V. Szentpaly and S. Liu, “Electrophilicity Index”, J Am Chem Soc, vol. 121, no. 9. pp. 1922-1924, Feb. 1999. http://pubs.acs.org/doi/abs/10.1021/ja983494x

R.G. Parr R G and R.G. Pearson, “Absolute hardness: companion parameter to absolute electronegativity”, J Am Chem Soc, vol. 105, no. 26, pp. 7512-7516, Dec. 1983. http://pubs.acs.org/doi/abs/10.1021/ja00364a005

L.R. Domingo and P. Pérez, “The nucleophilicity N index in organic chemistry”, Org Biomol Chem, vol. 9, pp. 7168-7175, Jun. 2011. http://pubs.rsc.org/en/content/articlelanding/2011/ob/c1ob05856h#!divAbstract

W. Kohn and L. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, J Phys Rev, vol. 140, pp. 1133-1138, Nov. 1965. http://journals.aps.org/pr/abstract/10.1103/PhysRev.140.A1133


Refbacks

  • There are currently no refbacks.


MAYFEB Journal of Chemistry and Chemical Engineering

MAYFEB TECHNOLOGY DEVELOPMENT

Toronto, Ontario, Canada

ISSN 2560-693X